HOMEWORK #8
SOLUTIONS TO SELECTED PROBLEMS

Problem 8.4 — Normality of the composite. Let K C Li,Ly, C K be
two finite extensions.

Lemma 1. If L1/K and Ls/K are normal, then so is their composite
LiLy/K.

First proof. We know that a finite extension L/K is normal if and only if it is
a splitting field (over K) of a polynomial f € K[t]. So, by our assumptions,
there exist polynomials fi, fo € K[t] such that L;/K is a splitting field for
fi (i = 1,2). Now, the composite L;Ls is a splitting field of the product
fifa, hence L1Ly/K is normal. O

Lemma 2. Gal(K/L;Ls) = Gal(K/L1) N Gal(K/Ly).

Proof. If ¢ € Gal(K/LiLs) then it is the identity on L;Ls hence on the
subfields Ly and Ls. This shows the inclusion C. In the other direction,
if o is an automorphism of K and it is the identity on both L1, Lo then
it is the identity on Lj Lo (to see this, write L1 = K(aq,...,q,) and Ly =
K(ﬁl, ce ,ﬁm) Then L1L2 = K(Oél, ceey an,ﬁl, ey ﬁm) and O'(Oéi) = Oy,
o(B;) = p; for all 4, j). O
Lemma 3. A finite extension L/K is normal if and only if Gal(K /L) is
normal in Gal(K/K).

Proof. Let o € Gal(K/K). Then o(L) is a subfield of K, and Gal(K /o (L)) =
o Gal(K/L)o~! (just check on elements, for example if z € o(L) then
o~ Y(z) € L hence for every 7 € Gal(K/L), 7(c7(z)) = o~ !(z) so that
oro Y x) = oo~ (x) = x thus or0~! € Gal(K /o (L))).

By Galois theorem we see that all the subfields (L) are equal to L if and
only if all the subgroups o Gal(K /L)o~! are equal to Gal(K/L). The latter
condition is the definition of the normality of Gal(K /L) in Gal(K /K), while
the former condition on L is equivalent to the normality of L/K. O

Second proof of Lemma 1. Let N; = Gal(f(/Li).i By lemma 3, Ny, Ny are
normal in G = Gal(K/K), hence N = Gal(K/L1Ly) = Ny N Ny (by
lemma 2) is normal in G, so by lemma 3 again, L Lo/K is normal. (]

Corollary. If L1 /K, Ly/K are Galois, then L1La/K is Galois.
What can be said about the Galois group of the composite?
Lemma 4. If L /K, Ly/K are Galois, then there is an embedding
Gal(Lng/K) — Gal(Ll/K) X Gal(Lg/K)
Proof. One can either construct the embedding directly by o + (o|1,,0|1,),
or use the second proof of Lemma 1 and note the following two facts; first,
if N1, N2 <G then G/(Ny N Na) — G/N1 x G/Na. Second, for a Galois
extension L/K, Gal(L/K) = Gal(K/K)/ Gal(K/L). O
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Problem 8.5. Let K be a field with char K # 2. Let a € K. Then the
extension K (y/a)/K obtained by adjoining a square root of a is either of
degree 1 (if a = b? for some b € K) or of degree 2. Since the polynomial
t> — @ has derivative 2t and char K # 2, the extension is separable. It is
also normal (any extension of degree < 2 is normal), hence Galois, and the
Galois group is either trivial or Z/27Z.

Now let ay,...,a, € K and consider the extension K (\/a1,...,/a,)/K.
Since it is the composite of the extensions K (/a;)/K which are Galois, by
the corollary before lemma 4, it is Galois. By lemma 4 we also have

G = Gal(K(\a,...,an)/K) — [] Gal(K(v/a;)/K)
=1

Since each of the factors is either 1 or Z/27Z, we see that G is embedded in
(Z/27Z)™ for some m < n. But (Z/2Z)™ can be viewed as an m-dimensional
vector space over the field with 2 elements Fs, and any subgroup is easily
seen to be a vector subspace (hence as a vector space of lower dimension).
Thus G is isomorphic to a vector space of dimension r < m < n over Fo,
that is, G ~ (Z/27Z)".

Lemma. [K(\/a1,..., /a,) : K] = 2" if and only if none of the 2" — 1
products [[;c; a; (where I runs over all subsets ¢ # 1 C {1,2,...,n}) is a
square of an element in K.

Proof. Let Ly = K and L; = K(\/a1,...,/a;) for 1 <i < n. Then L; =
Li_1(y/a;) so that [L; : L;—1] < 2 and [L, : K] = 2" if and only if [L; :
Liq)=2forall<i<n.

Suppose that [L,, : K] = 2". Then [L; : L;—1] = 2 for all 1 <4 < n and
1,/a; is a basis of L; over L;_;. It follows (Theorem 1.1, Product formula)
that {Hid \/CTi}Ig{l,...,n} is a basis of L, over K. Taking I = ¢ we see
that 1 € K is an element of the basis. Since the elements of the basis are
independent over K, we see that [[,.;\/a; € K forall ¢ #1 C {1,...,n}.

We prove the opposite direction by induction on n, the case n = 1 being
trivial. Since the condition on subsets is obviously satisfied for {1,...,n—1},
by induction hypothesis we have [L,_; : K] = 2"~!. We assume [L,, :
L,—1] < 2 and arrive at a contradiction. Indeed, we have L,, = L, so that
Van € Ly 1. Now {1, /a, "1} is a basis of L, _1/Ly, 2, so we can write

Van = A+ B\/an_1

for unique A, B € L,,_o. Squaring this, we see that

an = (A% + B?*a,_1) + 2AB/an_1
But a, € K C L2, and since {1, \/a,_1} is a basis of L, _1/L, 2, we must
have that 2AB = 0, so that A =0 or B = 0.

If B =0, then \/a,, = A € L,,_», but this is impossible as [L,_2(y/an) :
L,,—2] = 2 by the induction hypothesis on the set a1, ..., a,—2,a, (withn—1
elements).

If A =0, then \/a, = B\/a,—1 so that ,/a,~1a, € L,—2. But again this
is impossible since [Ly,—2(/@n_1an) : Ly—2] = 2 by the induction hypothesis
on the n — 1 element set aq,...,an—1,an—1a, (all products are products of
some a;-s). O



