HOMEWORK #3
SOLUTIONS TO SELECTED PROBLEMS

Problem 3.3. (a) Use Eisenstein’s criterion with the prime 7. 7 does not
divide the highest coefficient, does divide all other coefficients and 72 does
not divide the constant term.

(b) Use the following lemma:

Lemma. Let F be a field and let a,b € F such that a # 0. Let f(t) € F[t]
be a polynomial and set g(t) = f(at +b). Then f is irreducible if and only
if g is irreducible.

Proof. It f(t) = fi(t)f2(t) is a non-trivial factorization then g(t) = f(at +
b) = fi(at +b) fa(at +b) is a non-trivial factorization of g. Conversely, note
that f(t) = g((t — b)/a) so applying the first part gives the result. O

So instead of f(t) = #*~1 4+ ...+t + 1 we consider g(t) = f(t + 1), Then
by f(t) = (tp —1)/(t —1) we have g(t) = ((t + 1)’ = 1)/t = ( )t =
Y ( )¢, Since (%) is divisible by p for 0 < < p and p? 1 p, we
can apply the Elsenstein’s criterion for g(¢) with the prime p and get that
g(t) is irreducible in Q[t].

Problem 3.4. (a) By Lemma 3.5 (see Lecture Notes), in order to show that
tP — x € K]t] is irreducible, it is enough to show that x has no p-th root
in K. Indeed, an element of K has the form f(z,y)/g(x,y) for polynomials
f,g9 € Fplz,y]. Now, f(z,y)? = f(zP,y?) (because a? = a for a € F,), so
that * = (f/g)? means zg(zP,y?) = f(2P,yP) which is impossible because
all monomials in f(zP, yP) have their x degree divisible by p, and in the LHS
all monomials have their x degree congruent to 1 modulo p.

(b) Note that one can think of L as F,(z'/?,y), i.e. rational functions
over [, in z/P (a new variable whose p-th power equals x) and y.

Denote by a a p-th root of z. One can construct an explicit isomorphism

L=K(a)— Fp(ml/P’ y) by
(fo/90) + (fi/g1)a + ... (fo-1/gp-1)aP ™t
(fo/90) + (fr/g0)a? + ... (fp1/gp—r)aP~1/P

It is surjective since Fp(xl/p, y) is an extension of Fy,(z,y) of degree p (it is
a simple extension obtained by adjoining z/? whose minimal polynomial is
of degree p).

Now the proof that t? — y is irreducible in L[t] is the same as in (a), one
should consider the y degree in each monomial of the polynomials.

(c) As in (b), one can see that M is isomorphic to F,(z'/?,y'/P) (a field
of rational functions in two variables whose p powers are the original  and
y). Any element of M has the form f/g for f,g € Fp[z/?,y'/?], so its p-th
power is f((zV/7)2, (/)P [g(/7)P, (/7)) = f(x,)/g(z,y) a rational
function in z,y hence in K.
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(d) The extension M/K is not simple since the number of intermediate
subfields is infinite. Indeed, for any f € K, consider the subfield My :=
K(fz'/? 4+ y'/P) of M. We have (fz'/? 4+ y'/P) = fPz +y € K thus
[Mf : K] <p.

Any two such fields are distinct; if My = M, then fal/p 4y /P gal/p 4
y'/P € My hence their difference (f — g)z'/? € M thus z'/? € M; and
yt/r = (f:zl/p+y1/p) = My, so that My = M. But this is impossible
since [M : K] = [M : L][L : K] = p? but [M;: K] < p.

Since there are infinite elements in K = F,(z,y), we get infinite number
of intermediate fields K C My C M.

Problem 3.5. (a) We can scale any quadratic equation over K to the form
22 +bx + ¢ = 0 where b,c € K. If char K # 2, we can "complete the
square”, i.e. write 22+ bz +c = (z+b/2)? + (c — b*/4), so x is the solution
to the original equation if and only if x 4+ b/2 is a solution to the equation
t? = b2/4 — c. Since by assumption the latter equation has a solution in K,
we deduce that the original equation has a solution in K.

(b) If char K = 2, we cannot proceed as in the previous case. Instead,
let 22 + bz + ¢ = 0 be a quadratic equation with b,c € K. We distinguish
between two cases:

(1) b = 0. In this case we have 22 = —c and a solution z exists by our
assumption.

(2) b # 0. In this case we can write = bt and then b?t2 +b- bt +c = 0,
or 2 +t = —c/b?, and the latter equation has a solution by our
assumption.

Problem 3.6. Let L/K be a field extension with [L : K] = 2 and assume
that char K # 2. Pick any o € L\ K. Then by [L: K] = [L : K(a)][K (o) :
K] we get that L = K(«). Since [K(«) : K] = 2, the minimal polynomial
of a over K has degree 2, i.e. of the form z? 4+ bx + ¢ = 0 for b,c € K.
As in Problem 3.5(a), setting 3 = a + b/2 we see that 3° = b?/4 —c € K
and K(5) = K(«). We conclude that L = K(f) with § a square root of an
element of K.

(a) It follows that it is enough to consider extensions of the form F5(\/a)
for a € F5 which is not a square. The only possible values of a are a = 2, 3.
Let’s construct an isomorphism F5(v/2) ~ F5(1/3).

Elements of F5(1/3) are of the form ¢+ dv/3 for ¢,d € F5. Since (2v/2)% =
4-2 =3, we define

c+dV3— c+2dv2
It is easy to verify that this defines the required isomorphism.

We conclude that there is only one quadratic extension of Fs, up to iso-
morphism.

(b) Since « is the sum of /2,13 € L, obviously Q(a) C L. For the
opposite inclusion, note that (\/g—ﬂ)(\/g—kﬁ) =1, hence v/3—v2 = 1/a.
We see that v/3 = (a+1/a)/2 € Q(a) and v2 = (a—1/a)/2 € Q(a), hence
L= Q(v2.v3) € Q(a).



