
HOMEWORK #3
SOLUTIONS TO SELECTED PROBLEMS

Problem 3.3. (a) Use Eisenstein’s criterion with the prime 7. 7 does not
divide the highest coefficient, does divide all other coefficients and 72 does
not divide the constant term.

(b) Use the following lemma:

Lemma. Let F be a field and let a, b ∈ F such that a 6= 0. Let f(t) ∈ F [t]
be a polynomial and set g(t) = f(at + b). Then f is irreducible if and only
if g is irreducible.

Proof. If f(t) = f1(t)f2(t) is a non-trivial factorization then g(t) = f(at +
b) = f1(at + b)f2(at + b) is a non-trivial factorization of g. Conversely, note
that f(t) = g((t− b)/a) so applying the first part gives the result. ¤

So instead of f(t) = tp−1 + · · ·+ t + 1 we consider g(t) = f(t + 1), Then
by f(t) = (tp − 1)/(t− 1) we have g(t) = ((t + 1)p − 1)/t =

∑p
i=1

(
p
i

)
ti−1 =

tp−1 +
∑p−1

i=1

(
p
i

)
ti−1. Since

(
p
i

)
is divisible by p for 0 < i < p and p2 - p, we

can apply the Eisenstein’s criterion for g(t) with the prime p and get that
g(t) is irreducible in Q[t].

Problem 3.4. (a) By Lemma 3.5 (see Lecture Notes), in order to show that
tp − x ∈ K[t] is irreducible, it is enough to show that x has no p-th root
in K. Indeed, an element of K has the form f(x, y)/g(x, y) for polynomials
f, g ∈ Fp[x, y]. Now, f(x, y)p = f(xp, yp) (because ap = a for a ∈ Fp), so
that x = (f/g)p means xg(xp, yp) = f(xp, yp) which is impossible because
all monomials in f(xp, yp) have their x degree divisible by p, and in the LHS
all monomials have their x degree congruent to 1 modulo p.

(b) Note that one can think of L as Fp(x1/p, y), i.e. rational functions
over Fp in x1/p (a new variable whose p-th power equals x) and y.

Denote by α a p-th root of x. One can construct an explicit isomorphism
L = K(α) → Fp(x1/p, y) by

(f0/g0) + (f1/g1)α + . . . (fp−1/gp−1)αp−1 7→
(f0/g0) + (f1/g1)x1/p + . . . (fp−1/gp−1)x(p−1)/p

It is surjective since Fp(x1/p, y) is an extension of Fp(x, y) of degree p (it is
a simple extension obtained by adjoining x1/p whose minimal polynomial is
of degree p).

Now the proof that tp − y is irreducible in L[t] is the same as in (a), one
should consider the y degree in each monomial of the polynomials.

(c) As in (b), one can see that M is isomorphic to Fp(x1/p, y1/p) (a field
of rational functions in two variables whose p powers are the original x and
y). Any element of M has the form f/g for f, g ∈ Fp[x1/p, y1/p], so its p-th
power is f((x1/p)p, (y1/p)p)/g((x1/p)p, (y1/p)p) = f(x, y)/g(x, y) a rational
function in x, y hence in K.
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(d) The extension M/K is not simple since the number of intermediate
subfields is infinite. Indeed, for any f ∈ K, consider the subfield Mf :=
K(fx1/p + y1/p) of M . We have (fx1/p + y1/p)p = fpx + y ∈ K thus
[Mf : K] ≤ p.

Any two such fields are distinct; if Mf = Mg then fx1/p + y1/p, gx1/p +
y1/p ∈ Mf hence their difference (f − g)x1/p ∈ Mf thus x1/p ∈ Mf and
y1/p = (fx1/p +y1/p)−fx1/p ∈ Mf , so that Mf = M . But this is impossible
since [M : K] = [M : L][L : K] = p2 but [Mf : K] ≤ p.

Since there are infinite elements in K = Fp(x, y), we get infinite number
of intermediate fields K ⊂ Mf ⊂ M .

Problem 3.5. (a) We can scale any quadratic equation over K to the form
x2 + bx + c = 0 where b, c ∈ K. If charK 6= 2, we can ”complete the
square”, i.e. write x2 + bx + c = (x + b/2)2 + (c− b2/4), so x is the solution
to the original equation if and only if x + b/2 is a solution to the equation
t2 = b2/4− c. Since by assumption the latter equation has a solution in K,
we deduce that the original equation has a solution in K.

(b) If charK = 2, we cannot proceed as in the previous case. Instead,
let x2 + bx + c = 0 be a quadratic equation with b, c ∈ K. We distinguish
between two cases:

(1) b = 0. In this case we have x2 = −c and a solution x exists by our
assumption.

(2) b 6= 0. In this case we can write x = bt and then b2t2 + b · bt + c = 0,
or t2 + t = −c/b2, and the latter equation has a solution by our
assumption.

Problem 3.6. Let L/K be a field extension with [L : K] = 2 and assume
that charK 6= 2. Pick any α ∈ L \K. Then by [L : K] = [L : K(α)][K(α) :
K] we get that L = K(α). Since [K(α) : K] = 2, the minimal polynomial
of α over K has degree 2, i.e. of the form x2 + bx + c = 0 for b, c ∈ K.
As in Problem 3.5(a), setting β = α + b/2 we see that β2 = b2/4 − c ∈ K
and K(β) = K(α). We conclude that L = K(β) with β a square root of an
element of K.

(a) It follows that it is enough to consider extensions of the form F5(
√

a)
for a ∈ F5 which is not a square. The only possible values of a are a = 2, 3.
Let’s construct an isomorphism F5(

√
2) ' F5(

√
3).

Elements of F5(
√

3) are of the form c+d
√

3 for c, d ∈ F5. Since (2
√

2)2 =
4 · 2 = 3, we define

c + d
√

3 7→ c + 2d
√

2
It is easy to verify that this defines the required isomorphism.

We conclude that there is only one quadratic extension of F5, up to iso-
morphism.

(b) Since α is the sum of
√

2,
√

3 ∈ L, obviously Q(α) ⊆ L. For the
opposite inclusion, note that (

√
3−√2)(

√
3+
√

2) = 1, hence
√

3−√2 = 1/α.
We see that

√
3 = (α+1/α)/2 ∈ Q(α) and

√
2 = (α−1/α)/2 ∈ Q(α), hence

L = Q(
√

2,
√

3) ⊆ Q(α).


