
HOMEWORK #2
SOLUTIONS TO SELECTED PROBLEMS

Problem 2.1. One has (a + b)p =
∑p

i=0

(
p
i

)
aibp−i. All the binomial coef-

ficients
(
p
i

)
are divisible by p for 0 < i < p, as they have p factor in the

nominator and no p factor in the denominator.

Problem 2.2. The proof is by induction on n, the case n = 1 being trivial.
Denote by Ki the subfield K(α1, . . . , αi), then obviously K1 ⊂ K2 . . .Kn−1 ⊂

Kn. By definition, Fn = Fn−1(αn) is the minimal subfield of L containing
Fn−1 and αn. But by the induction hypothesis, Fn−1 = Kn−1. Now Kn is a
field containing Kn−1 and αn, so by minimality Kn ⊃ Fn.

On the other hand, Kn is the minimal field containing K and α1, . . . , αn.
But Fn = Fn−1(αn) = Kn−1(αn) is a subfield of L containing α1, . . . , αn, so
that Fn ⊃ Kn.

Problem 2.3. We construct an isomorphism Ln ' K(t1, . . . , tn) by induc-
tion on n. For n = 1 this is clear. For n ≥ 0, it is enough to construct an
isomorphism K(t1, . . . , tn)(t) ' K(t1, . . . , tn+1), since

Ln+1 = Ln(t) ' K(t1, . . . , tn)(t) ' K(t1, . . . ,Kn+1)

where the first isomorphism follows by the induction hypothesis (any isomor-
phism F ' E can be extended to the fields of rational functions F (t) ' E(t)
by the action on coefficients).

We construct the isomorphism K(t1, . . . , tn)(t) ' K(t1, . . . , tn+1) in steps.
First, we define a monomorphism of rings K(t1, . . . , tn)[t] → K(t1, . . . , tn+1).
Then we use the following lemma

Lemma. Let A be a commutative integral domain and f : A → L a
monomorphism of rings into a field L. Consider the embedding i : A →
K(A) into the fraction field of A. Then there exists a unique extension of f

to a monomorphism of fields, f̃ : K(A) → L, such that f̃ ◦ i = f (on A).

to define K(t1, . . . , tn)(t) → K(t1, . . . , tn+1). Finally, we show that this
one-to-one map is also surjective (onto).

Step 1. An element of K(t1, . . . , tn)[t] has the form
∑

i(pi/qi)ti where pi, qi ∈
K[t1, . . . , tn] are polynomials in n variables. So we map this element to the
element

∑

i

pi(t1, . . . , tn)tin+1

qi(t1, . . . , tn)
=

∑
i(

∏
j 6=i qj(t1, . . . , tn))pi(t1, . . . , tn)tin+1∏

i qi(t1, . . . , tn)

in K(t1, . . . , tn+1)
One has to check that this is well defined by verifying that by taking

another representative of the same element in K(t1, . . . , tn)[t] we land in the
same element of K(t1, . . . , tn+1).
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It is clear that the map defined is a homomorphism of rings. It is also
one-to-one since any non-zero polynomial over K(t1, . . . , tn) gets mapped to
a non-zero element of K(t1, . . . , tn+1) (look at the nominator and verify that
it is non-zero if at least one of the pi is non-zero).

Step 2. We prove the lemma. The uniqueness of f̃ follows from the fact
that for any a, b 6= 0 in A we must have

f̃(a/b) = f̃(a/1)f̃(1/b) = f̃(i(a))/f̃(i(b)) = f(a)/f(b)

So we define f̃(a/b) = f(a)/f(b). This is well defined since f(b) 6= 0 for b 6= 0
(f is a monomorphism), and if c/d = a/b then ad = bc hence f(a)f(d) =
f(ad) = f(bc) = f(b)f(c) so that f(a)/f(b) = f(c)/f(d) is independent of
the representation of element in K(A). It is easy to see that f̃ : K(A) → L
is a monomorphism.

Step 3. By step 2 we get K(t1, . . . , tn)(t) → K(t1, . . . , tn+1). To prove this
map is onto, take an element in K(t1, . . . , tn+1), write it as a ratio P/Q
of polynomials, and write P,Q as polynomials in tn+1 with coefficients in
K[t1, . . . , tn], i.e. P =

∑
i pi(t1, . . . , tn)tin+1, Q =

∑
i qit

i
n+1. Verify that the

image of the element∑
i

pi
1 (t1, . . . , tn)ti∑

i
qi

1 (t1, . . . , tn)ti
∈ K(t1, . . . , tn)(t)

is P/Q.

Problem 2.4. (a) Since q(t) = t7−t4+t3−1 = (t3−1)(t4+1), the greatest
common divisor of q(t) and t3 − 1 is t3 − 1.

To prove (b) and (c), note that [K[x]/(f) : K] = deg f for any irreducible
polynomial f ∈ K[x] (problem 1.5). The polynomials in (b), (c) are irre-
ducible since they are of degrees 2, 3 and have no roots in the base field (see
lemma in the solution to problem 1.4).

Problem 2.5. We prove that for any polynomial f ∈ K[t] of positive degree
n, there is an extension L of K such that f splits in L and [L : K] ≤ n!.

The proof is by induction on n = deg f . For n = 1, f is linear hence has
exactly one root in K, so we take L = K.

Now let f ∈ K[t] be of degree n. We treat two cases:
1. f is reducible. In this case, write f = gh. Write m = deg g < n and

n −m = deg h < n. By the induction hypothesis for g and K, there exists
an extension K ′ ⊃ K such that g splits in K ′ and [K ′ : K] ≤ m!. Now,
h ∈ K[t] ⊂ K ′[t], so by the induction hypothesis for h and K ′, there exists an
extension L ⊃ K ′ such that h splits in L and [L : K ′] ≤ (n−m)!. It is easy
to see that f splits in L and [L : K] = [L : K ′][K ′ : K] ≤ m!(n−m)! < n!.

2. f is irreducible. Take K ′ = K[t]/(f). Then K ′ ⊃ K is an extension
of degree n which has a root of f (namely, the image of t), denote it α.
Then in K ′[t] there is a factorization f(t) = (t − α)g(t) with g ∈ K ′[t]
and deg g = n − 1. By the induction hypothesis for g and K ′, there is an
extension L ⊃ K ′ such that g splits in L and [L : K ′] ≤ (n − 1)!. Then f
splits in L and [L : K] = [L : K ′][K ′ : K] ≤ (n− 1)!n = n!.


