HOMEWORK #2
SOLUTIONS TO SELECTED PROBLEMS

Problem 2.1. One has (a 4+ b)? = Y7 (?)a’b?~*. All the binomial coef-
ficients (f) are divisible by p for 0 < ¢ < p, as they have p factor in the
nominator and no p factor in the denominator.

Problem 2.2. The proof is by induction on n, the case n = 1 being trivial.

Denote by K; the subfield K (a1, ..., q;), then obviously K; C Ka... K,
K,. By definition, F,, = F,,_1(ay,) is the minimal subfield of L containing
F,,_1 and «,,. But by the induction hypothesis, F;,,_1 = K,,_1. Now K, is a
field containing K,,_1 and «,,, so by minimality K, D F,.

On the other hand, K, is the minimal field containing K and aq, ..., ay,.
But F,, = F,—1(ay) = Kp—1(ay,) is a subfield of L containing oy, ..., ay, so
that F,, D K,.

Problem 2.3. We construct an isomorphism L, ~ K (t1,...,t,) by induc-
tion on n. For n = 1 this is clear. For n > 0, it is enough to construct an
isomorphism K (t1,...,tn)(t) ~ K(t1,...,tnt+1), since

Ln+1 = Ln(t) ~ K(tl, Ce ,tn)(t) >~ K(tl, PN ,Kn+1)

where the first isomorphism follows by the induction hypothesis (any isomor-
phism F' ~ F can be extended to the fields of rational functions F(t) ~ E(t)
by the action on coefficients).

We construct the isomorphism K (t1,...,t
First, we define a monomorphism of rings K (¢
Then we use the following lemma

n)(t) ~ K(t1,...,ty41) in steps.
Loy tn)[t] = K(t1, ... tht1).

Lemma. Let A be a commutative integral domain and f : A — L a
monomorphism of rings into a field L. Consider the embedding i : A —
K (A) into the fraction field of A. Then there exists a unique extension of f
to a monomorphism of fields, f : K(A) — L, such that foi= f (on A).

to define K(ti,...,t,)(t) — K(t1,...,tn+1). Finally, we show that this
one-to-one map is also surjective (onto).

Step 1. An element of K (t1,...,t,)[t] has the form >, (p;/g:)t’ where p;, ¢; €
K|t,...,t,] are polynomials in n variables. So we map this element to the
element

Z pi(tl, e 7tn)ti7,+1 . Zz(H];&z %(tla s 7tn))pi(t1’ R 7tn)tzz+1
t

Q’i(t17"‘7 B

n) ILaitr, ... tn)

in K(tb s 7tn+1)

One has to check that this is well defined by verifying that by taking
another representative of the same element in K(t1,...,,)[t] we land in the
same element of K (t1,...,tn11).
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It is clear that the map defined is a homomorphism of rings. It is also
one-to-one since any non-zero polynomial over K (t1,...,t,) gets mapped to
a non-zero element of K (t1,...,t,+1) (look at the nominator and verify that
it is non-zero if at least one of the p; is non-zero).

Step 2. We prove the lemma. The uniqueness of f follows from the fact
that for any a,b # 0 in A we must have

fla/b) = f(a/1)f(1/b) = f(i(a))/ f(i(b)) = f(a)/f(b)
So we define f(a/b) = f(a)/f(b). This is well defined since f(b) # 0 for b # 0
(f is a monomorphism), and if ¢/d = a/b then ad = bc hence f(a)f(d) =
flad) = f(bc) = f(b)f(c) so that f(a)/f(b) = f(c)/f(d) is independent of
the representation of element in K (A). It is easy to see that f : K(A) — L
is a monomorphism.

Step 3. By step 2 we get K(t1,...,tn)(t) = K(t1,...,tn+1). To prove this
map is onto, take an element in K(t1,...,t,4+1), write it as a ratio P/Q
of polynomials, and write P, as polynomials in %, with coefficients in
Klt1,... tn], ie. P=3pi(t1,..., ta)th 1, @ = >, qith 1. Verify that the
image of the element

S Bt )t
: - K(t1,...,tn)(t
Ei%@la---;tn)tz (1 n)()

is P/Q.

Problem 2.4. (a) Since q(t) = t" —t*+t3—1 = (£ —1)(t* +1), the greatest
common divisor of ¢(t) and #3 — 1 is 3 — 1.

To prove (b) and (c), note that [K|[z]/(f) : K| = deg f for any irreducible
polynomial f € KJ[z] (problem 1.5). The polynomials in (b), (c) are irre-
ducible since they are of degrees 2, 3 and have no roots in the base field (see
lemma in the solution to problem 1.4).

Problem 2.5. We prove that for any polynomial f € K[t] of positive degree
n, there is an extension L of K such that f splits in L and [L : K] < nl.

The proof is by induction on n = deg f. For n = 1, f is linear hence has
exactly one root in K, so we take L = K.

Now let f € K|[t] be of degree n. We treat two cases:

1. f is reducible. In this case, write f = gh. Write m = degg < n and
n —m = degh < n. By the induction hypothesis for g and K, there exists
an extension K’ O K such that g splits in K" and [K' : K] < m!. Now,
h € K[t] C K'[t], so by the induction hypothesis for h and K’, there exists an
extension L D K’ such that h splits in L and [L : K'] < (n —m)!. It is easy
to see that f splits in L and [L : K] = [L : K'|[K’ : K] < m!(n —m)! < nl.

2. f is irreducible. Take K’ = K|[t]/(f). Then K’ D K is an extension
of degree n which has a root of f (namely, the image of t), denote it «.
Then in K'[t] there is a factorization f(t) = (¢t — a)g(t) with g € K'[t]
and degg = n — 1. By the induction hypothesis for g and K’, there is an
extension L D K’ such that ¢ splits in L and [L : K'] < (n —1)!. Then f
splits in L and [L: K| =[L: K'|[K': K] < (n—1)ln=nl.



