HOMEWORK #5 IN ALGEBRAIC STRUCTURES 2

Problem 5.1. Prove Lemma 5.2.

Problem 5.2. Prove Lemma 5.5.

Problem 5.3. Let \mathbb{F}_p be the field with p elements. For any r > 0 we define $Q_r(t) := t^{p^r} - t$. Let M_r be a splitting field of $Q_r(t)$ over \mathbb{F}_p . Show that:

(a) M_r is a finite field with p^r elements.

A hint. Let $N_r \subset M_r$ be the set of roots of $Q_r(t)$. Show that N_r is a subfield of M_r .

- (b) any finite field K such that $|K| = p^r$ is a splitting field of $Q_r(t)$, A hint. Consider the multiplicative group K^{\times} .
- (c) for any $q = p^r$ there exists a unique [up to an isomorphism] finite field \mathbb{F}_q with q elements.

Problem 5.4. Let K be a finite field with q elements and let $K \subset L$ be a finite extension. Show that:

- (a) $q = p^r$ where $p := \operatorname{ch}(K)$ and $r \ge 1$,
- (b) $|L| = q^{[L:K]}$,
- (c) the map $\mathcal{F}:L\to L$ defined by $\alpha\mapsto\alpha^q,\alpha\in L$ is a K-isomorphism,

We will consider \mathcal{F} as an element of the group Gal(L:K).

- (d) $\mathcal{F}^n \neq Id$ if 0 < n < [L:K] and $\mathcal{F}^{[L:K]} = Id$,
- (e) the group $\operatorname{Gal}(L:K)$ is a cyclic group of order [L:K] generated by $\mathcal{F}\in\operatorname{Gal}(L:K)$.