The trace and the norm.

We start with a reminder of some results from the Linear algebra.
Let K be a field. For any n > 0 we denote by GL,(K) the group of
invertible n x n matrices and by M, (K) the ring of n X n matrices. In
particular GL;(K) is equal to the multiplicative group K* := K —{0}.

Claim 9.1. a) There exists a group homomorphism Det : GL,(K) —
K* such that in the case when A € GL,,(K) is an upper or lower di-
agonal matrix Det(A) is equal to the product of diagonal elements of
A7

Let V be a finite-dimensional K-vector space and A : V — V a
linear operator. Given a basis B = {ey,...,e,} in V we denote by Ap
the n x n matrix Ag := (t;;),1 <4,j < n such that

A(Gj) = Z tijei

1<i<n

b) The determinant Det(Ag) does not depend on a choice of a basis
B. We denote it by Det(A),

c¢) The trace Tr(Ag) does not depend on a choice of a basis B. We
denote it by Tr(A),

d) for any pair A, B : V — V of linear operators we have

Tr(A + B) = Tr(A) + Tr(B), Det(AB) = Det(A)Tr(B)

Definition 9.1. Let L D K be a finite extension. We can consider
L as a finite-dimensional K-vector space.

a) To any a € L we associate a K-linear operator A, : L — L given
by

Aa(B) == af,feL

b) we define a map Ny /x : L — K by Ny /k(o) := Det(A,),

c) we define a map Trp i : L — K by Trp/k(a) :=Tr(Aa) .

Remark a) Since the trace map is linear we have Trp /(o + 3) =
Troj(a) +Trex (),

b) Since the determinant map is a group homomorphism we have

Npjx(af) = Np(a)Np(B),
c) it follows from the definition that for any o € K we have Tr(a) =
[L: Ko, Npjg(a) = olElL
Lemma 9.1. Let L D K be a finite extension, a € L be such that
L = K(«) and p(t) = Irr(a, K,t). Consider a decomposition
p(t) = H(t - Oéi)mi, Q; € K

i=1
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of p(t) in the product of linear factors. Then

a) Tryk(a) = Z1§z‘§s m; Qs

b) NL/K(O‘) = H1gj§s O‘;‘nj’

Proof. Let us choose a basis B = {¢;},0 < i <nin L = K(«)
where ¢; := a’,0 <i <n . Then AL(e;) = e;11 if ,0 <i<n—1and
Al(e, 1) = " = =3 ¢;af. So we have Det(AL) = (—1)"cy and
Tr(AL) = —c¢,_;. But it is clear from the formula

S

p(t) =[]t — )™, a; € K
i=1
that
(=1)"co = (=1)" H1gjgs O‘;nj and
—Cp—1 = — Zlgigs mjc.[]
Theorem 9.1. Let K be afield, p an odd prime number, a € K—KP?.
Then for any n > 0 the polynomial t*" — a € K|[t] is irreducible.

In the proof of the theorem we will use the following easy result.
Please prove it yourself.

Lemma 9.2. Let K be a field, p(t) € K|[t] a polynomial of positive
degree, K D K be an algebraic closure of K, € K an element such
that p(a) = 0. The polynomial p(t) € K|t] is irreducible iff [K(«) :
K]=deg(p(t))-

Proof of Theorem 9.1. In the case when ch(K) = p,n = 1 the
result follows from Lemma 3.5. The result for ch(K) = p,n > 1 can

be proven by exactly the same arguments. So we can assume that
ch(K') # p. We first consider the case when n = 1.

Let K O K be an algebraic closure of K, o € K an element such
that o = a. It is sufficient to show that [K(«) : K] = deg(t’ —a). We
show that the assumption [K(«) : K] < p leads to a contradiction.

So suppose that d := [K(a) : K] < p. Let b := Ng(y/k(a) € K.
Since o = a we have 0’ = Nk()/k(a) = a?. Since d,p are relatively
prime there exists m,n € Z such that md + np = 1. Then we have

a=a™"? = (¢ (a™)? = (b™)(a")? € K

This contradicts the assumption that a € K — KP.

Now we prove the theorem by induction in n. Suppose it is known
for polynomials of the form """ — b for all the fields L,b e L — LP.
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As before let K D K be an algebraic closure of K, o € K an element
such that o = a. We know that [K(«) : K] = p. As follows from
Lemma 9.1 we have N (q)/x(e) = (1) la=a

I claim that there is no § € K(«) such that a = (P. Really if o = [P
then Ng(ay/x(a) = cP,c € K where ¢ := Ng(a)/x(83). So a = c?. But
we assumed that a € K — KP.

Now we can finish the proof of the Theorem 9.1. Let v € K be a
solution of the equation fypnfl = «. Since « is not a p-th power in K («)
we know [ by the inductive assumption] that [K(vy) : K(a)] = p™ L.
Therefore [K(v) : K| = p™.00

Remark. One can show that a polynomial *" —a € K[t|,n > 1 is
irreducible iff a ¢ K? and a ¢ —4K*.

The condition a ¢ —4K* is necessary. Really for any a = —4b*, b €
K we have t* — a = t* + 4b* = (¢* + 2bt + 2b%)(t* — 20t + 2b%)

Corollary. Let K be a field, n an odd number, a € K such that
a ¢ K" for any divisor  of n,r > 1. Then t" — a is irreducible in K[t].

Proof. Let’s write n as a product of powers of prime numbers n =
[[;_,pj*. Choose § € K such that 8" = a. We have to show that
K{3): K] =n. )

We define a; € K by a; := B%P:'. Tt is clear that o' = a.
Therefore it follows from Theorem 9.1 that [K(a;) : K] = p.*. Since
K(o;) € K(§),1 < i < s we see that K(f) contains the composite
field K (ay)K (a2)...K(as). Since the degrees [K(«;) : K] are relatively
prime we see that

(K (1)K (az)... K (o) : K] = [[[K() : K] =n. O

i=1

Lemma 9.2 Let K be a field, ch(K) # 2 and a € K — K? such
that a € L? for non-trivial finite extension L D K. Then for any finite
normal extension M D K the group Gal(M/K) is cyclic of order 2".

Example. K =R.

Proof. If M # K that by the assumption we can find @ € M
such that a = o?. Let G := Gal(M/K),G" := Gal(M/K(«)). Then
G/G' = Gal(/K(a)/K) = Z/27Z.

I claim that any element ¢ € G — G’ generates G. Really choose
g € G — G" and denote by H C G the subgroup generated by g. We
want to show that H = G. By the Main theorem of Galois it is sufficient
to check that M = K. Since g(a) = —a we see that « ¢ M. But
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then it follows from our assumption that M = K. So we see that the
group Gal(M/K) is cyclic.

It is easy to see that for any cyclic group G of order n # 2" one can
find ¢ € G — G’ which does not generate G where G’ C G is the unique
subgroup of G of index 2.[J



