
Theorem 7.1. Let L ⊃ K be a finite extension. Then
a)[L : K] ≥ [L : K]s
b) the extension L ⊃ K is separable iff [L : K] = [L : K]s.

Proof. Let M be a normal closure of L : K. Consider first the
case when L ⊃ K is an elementary extension. In this case there exists
α ∈ L such that L = K(α). We know that deg(p(t)) = [L : K] and
it follows from Lemma 3.3 that the separable degree [L : K]s is equal
to the number of roots of the polynomial p(t) := Irr(α,K, t) in M .
Since the number of roots of the polynomial p(t) in M is not bigger
then it’s degree we see that [L : K]s ≤deg(p(t)) = [L : K]. Moreover
[L : K] = [L : K]s iff the polynomial p(t) is separable. So the Theorem
7.1 is true for elementary extensions.

Now we prove the Theorem 7.1 by induction in [L : K]. If [L : K] = 1
then L = K and there is nothing to prove. So assume [L : K] > 1,
choose α ∈ L−K and write p(t) := Irr(α, K, t).

Since [L : K(α)] < [L : K] we know from the inductive assumption
that [L : K(α)]s < [L : K(α)]. It follows now from Lemma 6.5 that

[L : K]s = [L : K(α)]s[K(α) : K]s ≤ [L : K(α)][K(α) : K]

This prove the part a).

Assume now that [L : K] = [L : K]s. We want to show that the
extension L ⊃ K is separable. In other words we want to show that
for any α ∈ L the extension K(α) : K is separable. But we know that
[L : K(α)] ≤ [L : K(α)]s and [K(α) : K]s ≤ [K(α) : K]. Therefore the
equality [L : K] = [L : K]s implies the equality

[K(α) : K] = [K(α) : K]s and it follows from the beginning of the
proof of Theorem 5.2 that the polynomial p(t) := Irr(α, K, t) is is
separable.

Assume now that the extension L ⊃ K is separable. We want to
show that [L : K] = [L : K]s. We start with the following result.

Lemma 7.1. Let K ⊂ F ⊂ L be finite extensions. If the extension
L : K is separable then the extensions L : F and F : K are also
separable.

Proof . Suppose the extension L : K is separable. It follows imme-
diately from the definition that the extension F : K is also separable.
So it is sufficient to show that the extensions L : F is separable.

To show that the extension L : F is separable we have to show that
for any α ∈ L the polynomial

r(t) := Irr(α, F, t) ∈ F [t] has simple roots in M . Let
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R(t) := Irr(α, K, t) ∈ K[t]

Since L : K is separable we know that the polynomial R(t) has simple
roots in M . On the other hand r(t)|R(t). So all the roots of r(t) are
simple.¤

Now we can finish the proof of Theorem 7.1. Let L ⊃ K be a
separable extension. We want to show that [L : K] = [L : K]s. Since
[L : K]s = [L : K(α)]s[K(α) : K]s and the field extensions L : K(α)
and K(α) : K are separable the equality follows from the inductive
assumption.¤

Lemma 7.2. a). Let K ⊂ F ⊂ L be finite extensions. If the
extensions L : F and F : K are separable then the extension L : K is
also separable.

b) If K ⊂ L is a finite separable extension then the normal closure
M of L : K is separable over K.

The proof of Lemma 7.2 is assigned as a homework problem.

Definition 7.1. Let L ⊃ K be a finite normal field extension,
G := Gal(L/K) be the Galois group of L : K. To any intermediate
field F, K ⊂ F ⊂ L we can assign a subgroup H(F ) ⊂ Gal(L/K)
define by

H(F ) := {h ∈ Gal(L/K)|h(f) = f, ∀f ∈ F}
By the definition H(F ) = Gal(L : F ).

Conversely to any subgroup H ⊂ Gal(L/K) we can assign an inter-
mediate field extension LH , K ⊂ LH ⊂ L where

LH := {l ∈ L|h(l) = l,∀h ∈ H}
In other words if A(L,K) is the set of fields F in between K and L

and B(L,K) is the set of subgroups of G we constructed maps
τ : A(L,K) → B(L,K), F → H(F ) and
η : B(L,K) → A(L,K), τ : H → LH .

The Main theorem of the Galois theory.
Let L ⊃ K a finite normal separable field extension . Then
a) |Gal(L/K)| = [L : K],
b) LG = K
c) τ ◦ η = IdA(L,K)

d) η ◦ τ = IdB(L,K).

Proof. The part a) follows from Theorem 7.1.
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Proof of b). Let F := LH . As follows from a), the product formula
and Theorem 5.1 we have [F : K] = [L : K]/[L : F ] = 1. So F = K.

Proof of c). Let F ∈ A(L,K) be subfield of L containing K, H(F ) :=
η(F ) ⊂ G. Since the extension L ⊃ K is normal it follows from Lemma
6.1. c) that the extension L ⊃ F is also normal. So it follows from a)
that |H(F )| = [L : F ]. Since H(F ) = Gal(L : F ) it follows from b)
that LH = F . So τ ◦ η(F ) = F .

Proof of d) Let U ⊂ B(L,K) be a subgroup of G and F := LU .
Define H := H(F ). We want to show that U = H. By the definition,
for any u ∈ U, α ∈ F we have u(α) = α. In other words U ⊂ H. As
follows from Theorem 5.1 we have [L : F ] = |U |. On the other hand,
it follows from c) that [L : F ] = |H|. So |U | = |H| and the inclusion
U ⊂ H implies that U = H.¤

Lemma 7.3. For a finite field extension L ⊃ K the following three
conditions are equivalent

a) L : K is normal,
b) for every extension M of K containing L and every K-homomorphism

f : L → M we have Im(f) ⊂ L and f induces an automorphism of L
c) there exists a normal extension N of K containing L such that for

every K-homomorphism f : L → N we have Im(f) ⊂ L,
.

Proof. We show that a) ⇒ b) ⇒ c) ⇒ a).
a) ⇒ b).We first show that for any α ∈ L we have f(α) ∈ L. Let

p(t) = Irr(α,K, t) ∈ K[t] be the irreducible polynomial monic which
has a root α ∈ L. Since L is normal the polynomial splits in L[t] to a
product of linear factors. So all it roots belong to L. Since f : L → M
is K-homomorphism we know that f(α) ∈ M is a root of p(t). So
f(α) ∈ L.

To show that f induces an automorphism of L we observe that dim

KL < ∞. Since f is an imbedding it induces an automorphism of L.

b) ⇒ c). Follows from Lemma 5.1.

c) ⇒ a). Let p(t) = Irr(α,K, t) ∈ K[t] be the irreducible polynomial
monic which has a root α ∈ L. We want to show that all his roots in
a normal closure N of L : K are actually in L. Let β ∈ N be a root
of p(t). As follows from Lemma 6.1 a) there exists an automorphism f
of N such that f(α) = β. Since by c) we have f(L) ⊂ L we see that
β ∈ L.¤

lemma 7.4. a) Let L ⊃ K be a finite extension, F, E ⊂ L subfields
containing K and EF ⊂ L be the minimal subfield of L containing
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both E and F . If both extensions E : K and F : K are separable then
the extension EF : K is separable,

b) Ls := {α ∈ L| the extension K(α) : K is separable}. Then Ls ⊂ L
is a subfield,

c) [Ls : K] = [L : K]s

I’ll leave the proof of lemma 7.4 as a homework.

Definition 7.2 Let L ⊃ K be a finite extension of characteristic
p > 0. We say that an element α ∈ L is purely inseparable over K if
there exists n ≥ 0 such that αpn ∈ K.

Lemma 7.5. Let L ⊃ K be a finite extension and p :=ch (K)> 0.
The following four conditions are equivalent:

P1. Ls = K,
P2. every element α ∈ L is purely inseparable,
P3. for every element α ∈ L we have Irr(α, K, t) = tp

n − a for some
n ≥ 0, a ∈ K,

P4. there exists a set of generators α1, ..., αm ∈ L of L over K [ that
is L = K(α1, ..., αm)] such that all elements αi, 1 ≤ i ≤ m are purely
inseparable over K.

P1 implies P2. Let M be a normal closure of L over K. Assume
P1. Fix α ∈ L. We want to show that every element α ∈ L is purely
inseparable. As follows from Lemma 5.3 we have [K(α) : K]s = 1.
Let p(t) := Irr(α, K, t). As follows from Lemma 3.3 to the number of
distinct roots of p(t) in M is equal to [K(α) : K]s. So p(t) = (t− α)m.

I claim that there exists n ≥ 0 such that m = pn.

Really write m = pnr where r is prime to p. Then we have

p(t) = ((t− α)pn

)r = (tp
n − αpn

)r = tp
nr − rαpn

tp
n(r−1)r + ...

where ... stay for lower terms.
Since p(t) ∈ K[t] we see that rαpn ∈ K. Since r is prime to p we can

divide by r. Therefore αpn ∈ K and p(t) = (t−α)pn
. Since p(t) ∈ K[t]

we see that αpn ∈ K.¤
I’ll leave for you to show that P2 implies P3 and that P3 implies P4.

P4 implies P1. We have to show that any K-homomorphism f :
L → M is equal to the identity. Since L = K(α1, ..., αm) it is sufficient
to show that

f(αi) = αi, 1 ≤ i ≤ m. Since the elements αi are purely inseparable
for any i, 1 ≤ i ≤ n there exists n ≥ 0 such that αi is a root of the
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polynomial p(t) = tp
n−a. But then p(t) = (t−αi)

pn
and therefore αi is

it’s only root. Since f(αi) is also a root of p(t) we see that f(αi) = αi.¤
Definition 7.2. Let L ⊃ K be a finite extension.
a) We say that the extension L ⊃ K is purely inseparable if it satisfies

the conditions of Lemma 7.6,
b) we define [L : K]i := [L : Ls] = [L : K]/[L : K]s.

Now we finish the proof of Theorem 2.1. Remind the Definition 2.3.
We say that a finite extension L ⊃ K satisfies the condition ? if there

exists only a finite number of subfields F ⊂ L containing K.
Theorem 7.2. a) A finite extension L ⊃ K is elementary iff it

satisfies the condition ?,
b) any finite separable extension L ⊃ K is elementary.

Proof of a) We have to show that
i) if L ⊃ K is a finite extension of K which satisfies the condition ?

then the extension L ⊃ K is elementary
and
ii) if L ⊃ K is an elementary extension then it satisfies the condition

?.

The part i) was proven in the second lecture. Now we will proof the
part ii).

So assume that L = K(α). We want to show that the set A of
intermediate fields F,K ⊂ F ⊂ L is finite.

Let M ⊃ L be a splitting field of p(t) := Irr(α,K, t) ∈ K[t]. Then

p(t) =
s∏

i=1

(t− αi)
mi , αi ∈ M, mi > 0

Let B be the set of monic polynomials in r(t) ∈ M [t] which divide p(t).
Since any such monic polynomials in r(t) ∈ M [t] has a form

r(t) =
s∏

i=1

(t− αi)
ni , αi ∈ M, 0 ≤ ni ≤ mi > 0

we see that the set B is finite.
So for a proof of ii) it is sufficient to construct an imbedding of the

set A into the set B.
Given an intermediate field F,K ⊂ F ⊂ L consider the polynomial

rF (t) := Irr(α, F, t) ∈ F [t]. As we know degrF (t) = [F (α) : F ]. Since
F (α) ⊃ K(α) = L we see that F (α) = L and deg(rF (t)) = [L : F ].

Since p(α) = 0, the polynomial rF (t) ∈ F [t] is irreducible in F [t] and
rF (α) = 0 we see that rF (t)|p(t). So rF (t) ∈ B and we constructed a
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map A → B. To finish the proof of ii) it is sufficient to show that we
can reconstruct the field F if we know the polynomial rF (t).

Let F0 ⊂ L be the field generated over K by the coefficients of the
polynomial rF (t). I claim that F = F0.

By the construction we have rF (t) ∈ F0[t]. The inclusion rF (t) ∈ F [t]
implies that F0 ⊂ F . Since the polynomial rF (t) ∈ F [t] is irreducible
it is also irreducible in F0[t]. So we see that degrF (t) = [L : F0]. Now
the inclusion F0 ⊂ F implies that F0 = F .

By the definition the field F0 is is determined by the knowledge of
the polynomial rF (t).¤

To prove b) we have to show that any finite separable extension
L ⊃ K satisfies the condition ?.

In the case when K is a finite field there is nothing to prove. So we
assume that the field K is infinite.

Since the extension L ⊃ K is finite we can find α1, ..., αn ∈ L such
that that L = K(α1, ..., αn). We have to show that there exists β ∈ L
such that L = K(β). I’ll prove the result for n = 2. The general case
follows easily by induction. [ We have run through analogous reduction
to the case n = 2 a number of times] .

So assume that L = K(α1, α2). Let M be a normal closure of
L, d := [L : K]. Since the extension L ⊃ K is separable it follows
from Theorem 5.2 that there exists d distinct field homomorphisms
fi : L → M, 1 ≤ i ≤ d. Consider the polynomial

q(t) :=
∏

1≤i 6=j≤d

(fi(α1) + tfi(α2)− fj(α1)− tfj(α2))

By the construction fi 6= fj for i 6= j. So q(t) 6= 0 and the polynomial
q(t) has only finite number of roots. Since |K| = ∞ there exists c ∈ K
such that q(c) 6= 0. In other words fi(α1) + tfi(α2) 6= fj(α1) + tfj(α2)
if 1 ≤ i 6= j ≤ d. Let β := α1 + cα2 for 1 ≤ i 6= j ≤ d, L′ := K(β). We
want to show that L′ = L.

Let Let gi : L′ → M,≤ i ≤ d be the restrictions of fi to L′ ⊂ L. Since
fi(α) 6= fj(α) for 1 ≤ i 6= j ≤ d we see that the field homomorphisms
gi : L′ → M are distinct. Therefore [L′ : K]s ≥ d = [L : K]. It follows
now from Theorem 5.2 that [L′ : K] ≥ [L : K]. Since L′ ⊂ L this is
possible only if L′ = L.¤


