Theorem 7.1. Let L D K be a finite extension. Then
a)[L: K| >|[L: K],
b) the extension L D K is separable iff [L : K] = [L : K],.

Proof. Let M be a normal closure of L : K. Consider first the
case when L D K is an elementary extension. In this case there exists
a € L such that L = K(«). We know that deg(p(t)) = [L : K] and
it follows from Lemma 3.3 that the separable degree [L : K], is equal
to the number of roots of the polynomial p(t) := Irr(a, K,t) in M.
Since the number of roots of the polynomial p(t) in M is not bigger
then it’s degree we see that [L : K|, <deg(p(t)) = [L : K]. Moreover
[L: K] =[L: K] iff the polynomial p(t) is separable. So the Theorem
7.1 is true for elementary extensions.

Now we prove the Theorem 7.1 by inductionin [L : K. If [L: K] =1
then L = K and there is nothing to prove. So assume [L : K] > 1,
choose a € L — K and write p(t) := Irr(a, K, t).

Since [L : K(«a)] < [L : K] we know from the inductive assumption
that [L: K(«o)]s < [L: K(«)]. It follows now from Lemma 6.5 that

L: K], = [L: K(@)L[K() : K], < [L: K(@)][K(a) : K]

This prove the part a).

Assume now that [L : K| = [L : K];. We want to show that the
extension L D K is separable. In other words we want to show that
for any o € L the extension K («) : K is separable. But we know that
[L: K(a)] <[L: K(a)]s and [K(«) : K] < [K(«) : K]. Therefore the
equality [L : K] = [L : K], implies the equality

[K(a) : K] = [K(a) : K]s and it follows from the beginning of the
proof of Theorem 5.2 that the polynomial p(t) := Irr(«, K,t) is is
separable.

Assume now that the extension L O K is separable. We want to
show that [L : K| = [L : K|s. We start with the following result.

Lemma 7.1. Let K C F' C L be finite extensions. If the extension
L : K is separable then the extensions L : F' and F' : K are also
separable.

Proof . Suppose the extension L : K is separable. It follows imme-
diately from the definition that the extension F': K is also separable.
So it is sufficient to show that the extensions L : F' is separable.

To show that the extension L : F'is separable we have to show that
for any o € L the polynomial

r(t) .= Irr(a, F,t) € F[t] has simple roots in M. Let
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R(t) .= Irr(a, K, t) € K[t]

Since L : K is separable we know that the polynomial R(¢) has simple
roots in M. On the other hand r(¢)|R(t). So all the roots of r(t) are
simple.[]

Now we can finish the proof of Theorem 7.1. Let L D K be a
separable extension. We want to show that [L : K] = [L : K],. Since
L : K], =[L: K(o)]s[K(a) : K] and the field extensions L : K(«)
and K(a) : K are separable the equality follows from the inductive
assumption.[]

Lemma 7.2. a). Let K C F C L be finite extensions. If the
extensions L : F' and F' : K are separable then the extension L : K is
also separable.

b) If K C L is a finite separable extension then the normal closure
M of L : K is separable over K.

The proof of Lemma 7.2 is assigned as a homework problem.

Definition 7.1. Let L D K be a finite normal field extension,
G := Gal(L/K) be the Galois group of L : K. To any intermediate
field F,K C F C L we can assign a subgroup H(F) C Gal(L/K)
define by

H(F) = {h € Gal(L/K)|h(f) = f,Vf € F}

By the definition H(F) = Gal(L : F).
Conversely to any subgroup H C Gal(L/K) we can assign an inter-
mediate field extension L7, K C L C L where

LY :={l € L|h(l) = 1,Yh € H}

In other words if A(L, K) is the set of fields F' in between K and L
and B(L, K) is the set of subgroups of G we constructed maps

7:A(L,K)— B(L,K),F — H(F) and

n:B(L,K)— A(L,K),7: H— L.

The Main theorem of the Galois theory.

Let L D K a finite normal separable field extension . Then

a) |Gal(L/K)| =[L: K],

b) LY = K

C) TOMN= IdA(L,K)

d) norT = ]dB(LJ()-

Proof. The part a) follows from Theorem 7.1.
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Proof of b). Let ' := L. As follows from a), the product formula
and Theorem 5.1 we have [F: K] =[L: K]/[L: F]=1. So F =K.

Proof of ¢). Let F' € A(L, K) be subfield of L containing K, H(F') :=
n(F) C G. Since the extension L D K is normal it follows from Lemma
6.1. ¢) that the extension L D F' is also normal. So it follows from a)
that |[H(F)| = [L : F]. Since H(F) = Gal(L : F) it follows from b)
that L = F. So ron(F) = F.

Proof of d) Let U C B(L,K) be a subgroup of G and F := LY.
Define H := H(F'). We want to show that U = H. By the definition,
for any u € U, € F we have u(a) = a. In other words U C H. As
follows from Theorem 5.1 we have [L : F| = |U|. On the other hand,
it follows from c) that [L : F] = |H|. So |U| = |H| and the inclusion
U C H implies that U = H.OJ

Lemma 7.3. For a finite field extension L D K the following three
conditions are equivalent

a) L : K is normal,

b) for every extension M of K containing L and every K-homomorphism
f: L — M we have Im(f) C L and f induces an automorphism of L

c) there exists a normal extension N of K containing L such that for
every K-homomorphism f: L — N we have Im(f) C L,

Proof. We show that a) = b) = ¢) = a).

a) = b).We first show that for any o € L we have f(a) € L. Let
p(t) = Irr(a, K,t) € K[t] be the irreducible polynomial monic which
has a root @ € L. Since L is normal the polynomial splits in L[t] to a
product of linear factors. So all it roots belong to L. Since f: L — M
is K-homomorphism we know that f(«a) € M is a root of p(t). So
f(a) € L.

To show that f induces an automorphism of L we observe that dim
kL < oo. Since f is an imbedding it induces an automorphism of L.

b) = ¢). Follows from Lemma 5.1.

c) = a). Let p(t) = Irr(a, K,t) € K[t] be the irreducible polynomial
monic which has a root o € L. We want to show that all his roots in
a normal closure N of L : K are actually in L. Let § € N be a root
of p(t). As follows from Lemma 6.1 a) there exists an automorphism f
of N such that f(«) = . Since by c¢) we have f(L) C L we see that
g e L0

lemma 7.4. a) Let L D K be a finite extension, F, £ C L subfields
containing K and EFF C L be the minimal subfield of L containing
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both E and F. If both extensions E' : K and F' : K are separable then
the extension FF' : K is separable,

b) Ls := {« € L| the extension K («) : K is separable}. Then L, C L
is a subfield,

¢) [Ls: K] =[L: K]

I’ll leave the proof of lemma 7.4 as a homework.

Definition 7.2 Let L D K be a finite extension of characteristic
p > 0. We say that an element o € L is purely inseparable over K if
there exists n > 0 such that o?" € K.

Lemma 7.5. Let L D K be a finite extension and p :=ch (K)> 0.
The following four conditions are equivalent:

Pl. L, =K,

P2. every element a € L is purely inseparable,

P3. for every element o € L we have Irr(a, K,t) = t*" — a for some
n>0,a¢c K,

P4. there exists a set of generators aq, ..., o, € L of L over K [ that
is L = K(ay, ..., a,,)] such that all elements a;,1 < i < m are purely
inseparable over K.

P1 implies P2. Let M be a normal closure of L over K. Assume
P1. Fix a € L. We want to show that every element o € L is purely
inseparable. As follows from Lemma 5.3 we have [K(«) : K], = 1.
Let p(t) := Irr(a, K,t). As follows from Lemma 3.3 to the number of
distinct roots of p(t) in M is equal to [K(«a) : K]s. So p(t) = (t — a)™.

I claim that there exists n > 0 such that m = p".

Really write m = p™r where r is prime to p. Then we have

(o

p(t) = ((t —a)’")" = (" — o) =" — pa?" "7 4

where ... stay for lower terms.

Since p(t) € K|[t] we see that ra?” € K. Since r is prime to p we can
divide by r. Therefore o*" € K and p(t) = (t — «)*". Since p(t) € K|[t]
we see that o € K.OJ

I’ll leave for you to show that P2 implies P3 and that P3 implies P4.

P4 implies P1. We have to show that any K-homomorphism f :
L — M is equal to the identity. Since L = K(ay, ..., ayy,) it is sufficient
to show that

fla;) = a;,1 <@ < m. Since the elements «; are purely inseparable
for any 4,1 < ¢ < n there exists n > 0 such that «; is a root of the
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polynomial p(t) = #*" —a. But then p(t) = (t—a;)P" and therefore «; is
it’s only root. Since f(q;) is also a root of p(t) we see that f(«;) = ;.00

Definition 7.2. Let L D K be a finite extension.
a) We say that the extension L D K is purely inseparable if it satisfies
the conditions of Lemma 7.6,

b) we define [L: K|; :==[L: Ls| =[L: K|/[L : K|,.

Now we finish the proof of Theorem 2.1. Remind the Definition 2.3.

We say that a finite extension L D K satisfies the condition « if there
exists only a finite number of subfields F' C L containing K.

Theorem 7.2. a) A finite extension L D K is elementary iff it
satisfies the condition x,

b) any finite separable extension L D K is elementary.

Proof of a) We have to show that

i) if L D K is a finite extension of K which satisfies the condition *
then the extension L D K is elementary

and

ii) if L D K is an elementary extension then it satisfies the condition
*.

The part i) was proven in the second lecture. Now we will proof the
part ii).

So assume that L = K(a). We want to show that the set A of
intermediate fields F, K C F C L is finite.

Let M D L be a splitting field of p(t) := Irr(«a, K,t) € K[t]. Then

p(t) = H(t — Oél')mi,Oéi S M,mi >0
i=1
Let B be the set of monic polynomials in r(t) € M|[t] which divide p(t).
Since any such monic polynomials in 7(¢) € M[t] has a form
r(t) = H(t — ;)" o€ M,0<mn; <m; >0
i=1
we see that the set B is finite.

So for a proof of ii) it is sufficient to construct an imbedding of the
set A into the set B.

Given an intermediate field F, K C F C L consider the polynomial
rr(t) == Irr(a, F,t) € F[t]. As we know degrp(t) = [F(a) : F]. Since
F(a) D K(a) = L we see that F(«) = L and deg(rp(t)) = [L : F].

Since p(a) = 0, the polynomial rp(t) € F[t] is irreducible in F'[t] and
rr(a) = 0 we see that rp(t)|p(t). So rp(t) € B and we constructed a
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map A — B. To finish the proof of ii) it is sufficient to show that we
can reconstruct the field F' if we know the polynomial 7 (t).

Let Fy C L be the field generated over K by the coefficients of the
polynomial rz(t). I claim that F' = Fj.

By the construction we have rp(t) € Fy[t]. The inclusion rg(t) € F[t]
implies that Fy C F. Since the polynomial rg(t) € F[t] is irreducible
it is also irreducible in Fy[t]. So we see that degrp(t) = [L : Fpy]. Now
the inclusion Fy C F' implies that Fy = F.

By the definition the field Fj is is determined by the knowledge of
the polynomial rg(¢).00

To prove b) we have to show that any finite separable extension
L D K satisfies the condition .

In the case when K is a finite field there is nothing to prove. So we
assume that the field K is infinite.

Since the extension L D K is finite we can find aq,...,a, € L such
that that L = K(ay, ..., a;,). We have to show that there exists 3 € L
such that L = K(f3). I'll prove the result for n = 2. The general case
follows easily by induction. | We have run through analogous reduction
to the case n = 2 a number of times] .

So assume that L = K(aj,a2). Let M be a normal closure of
L,d := [L : K]. Since the extension L D K is separable it follows
from Theorem 5.2 that there exists d distinct field homomorphisms
fi: L — M,1 <i<d. Consider the polynomial

g(t) = ] (filen) + tfiloz) = filar) = tf;(az))
1<iAj<d
By the construction f; # f; for i # j. So ¢(t) # 0 and the polynomial
q(t) has only finite number of roots. Since |K| = oo there exists ¢ € K
such that ¢(c) # 0. In other words fi(a1) + tfi(ae) # fi(an) + tfj(az)
ifl1<i#j<d Let :=a;+casforl<iz#j<d L :=K(). We
want to show that L' = L.

Let Let g; : L' — M, < i < d be the restrictions of f; to L' C L. Since
fila) # fi(a) for 1 < i # j < d we see that the field homomorphisms
gi - L' — M are distinct. Therefore [L' : K|, > d = [L : K]. Tt follows
now from Theorem 5.2 that [L' : K] > [L : K|. Since L' C L this is
possible only if L/ = L.[]



