Definition 4.1. Given a field extension L D K we denote by
Gal(L/K) the set of field isomorphisms f : L — L such that f(c) =
c,c€ K.

Remark As you will see the set Gal(L/K) has a natural group
structure. We call it the Galois group of the extension L D K.

Lemma 4.1. Show that

a) for any f, g € Gal(L/K) the composition

fog:L—L

belongs to Gal(L/K),

b) the composition law (f, g) — fog defines a group structure on the
set Gal(L/K) with the unit equal to the identity map Id: [ — [,] € L.

c) Let G = (g1, 92, ---, gn) be a finite group. Then for any g € G the

sets (991,992, ---, 99n) and (g1, g2, ---, gn) coincide.
The proof of Lemma 4.1 assigned as a homework problem.

Let L D K be afield extension, Gal(L/K). To any intermediate field
extension F, K C F' C L we can assign a subgroup H(F') C Gal(L/K)
define by

H(F) = {h € Gal(L/K)|h(f) = fVf € F}

Conversely to any subgroup H C Gal(L/K) we can assign an interme-
diate field extensionF'(H), K C F(H) C L where

F(H) = {l € L|h(l) = IVh € H}

In other words if A(L, K) is the set of fields F' in between K and L
and B(L, K) is the set of subgroups of G we constructed maps

7:AL,K)— B(L,K),F — H(F) and

n:B(L,K)— A(L,K),H — F(H).

The Main theorem of the Galois theory.

For a finite field extension L D K

a) |Gal(L/K)| < [L: K],

b) if |Gal(L/K)| = [L : K] then themaps 7 : A(L,K) — B(L,K),F —
H(F) and

n:B(L,K)— A(L,K),H — F(H) are isomorphisms,

¢) |Gal(L/K)| = [L : K] iff the extension L D K is normal and
separable,

d) any separable extension L D K is contained in a normal extension
M>LDK.

To finish the formulation of the main theorem we have to give defi-

nitions of normal and separable extensions.
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Definition 4.2. A finite field extension L D K is normal if any
irreducible polynomial p(t) € KJt| which has a root in L has all it
roots in L.

Theorem 4.2. An extension L D K is normal and finite iff it is a
splitting field for some polynomial over K.

Proof. a) Assume that L D K is normal and finite. We have to
construct a monic polynomial ¢(t) € K|[t] such which decomposes in
L[t] in a product of linear factors

gt)=t—a)™ x ... X (t—ap) ™, 0, € L,1<i<mn

and L = K(ay, ..., o).

Since the extension L D K is finite there exist i, ..., 5,, € L such
that L = K (B4, ..., Bm). Let p;(t) := Irr(B;, K,t) € K[t] be the corre-
sponding minimal polynomials and ¢(¢) := [[j_, p;(¢). Since polyno-
mials p;(t) € K[t] are irreducible and have roots §; € L it follows from
the normality of L D K that all the roots of p;(t) € K|t] are in L. So
L contains a splitting field of ¢(¢).

On the other hand since L = K (4, ..., 5,,) we see that this splitting
field of ¢(t) is equal to L.OJ

b) Assume now that L is a splitting field of a polynomial ¢(t) € K[t].
Then L D K is finite. We have to show that it is normal.

Let p(t) € K[t] be an irreducible polynomial and M be a splitting
field of the product ¢(¢)p(t). For any root o € M of p(t) we can consider
subfields K (o) C L(o) C M.

Lemma 4.2. The degree [L(«) : L] does not depend on a choice of
a root « € M of p(t).

Proof. Let a;,as be roots of p(t) in M. We have to show that
[L(a1) : L] = [L(ae) : L.

Consider extensions K C L C L(w;),i = 1,2. The product formula
implies that [L(a;) : L|[L : K| = [L(ey;) @ K]. So for the proof of
the equality [L(oy) : L] = [L(ag) : L] it is sufficient to show that
[L(cv) : K] = [L(e) : K].

It is clear [ see Lemma 3.4] that L(«;) is a splitting field for ¢(t) over
K(«;). Since | see Lemma 2.4] each of the fields K(«;) is isomorphic
to the quotient ring Kt]/(p(t)) there exists and isomorphism

n: K(aq) = K(az) such that n(c) =c¢,c € K.

It follows now from Theorem 3.1 that the the isomorphism 7 :
K(ay) — K(ag) can be extended to an isomorphism 7 : L(ay) —
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L(cw). But the existence of an isomorphism 7 : L(a;) — L(ay) implies
the equality [L(cy) : K] = [L(ag) : K]. Lemma 4.3 is proven.[]

Now we can finish the proof of Theorem 4.2. Let p(t) € K[t] be an
irreducible polynomial which has a root oo € L. We want to show that
all the roots of p(t) in M are actually in L. Let 5 € M be a root of
p(t). It follows from Lemma 4.2 that [L(«) : L] = [L(B) : L]. Since
«a € L we have [L(«) : L] = 1. Therefore [L(8) : L] = 1. So f € L.O

Definition 4.3. a) An irreducible polynomial p(t) € K|[t] is separa-
ble if it does not have multiple roots in a splitting field,

b) A finite field extension L D K is separable if for any o € L the
minimal polynomial p(t) = Irr(«, K,t) € K|[t] of « is separable,

c) We denote by D : K[t|] — K]|t] the K-linear map such that
D(t") := nt™ Y

d) we say that a field K of characteristic p > 0 is perfect if for any
a € K the equation t? — o = 0 has a solution in K.

We start with the following useful results.

Lemma 4.3. a) For any ¢(t),r(t) € K[t] we have

D(gr)(t) = Dg(t)r(t) + q(t) Dr(t)
b) is If K is a field of characteristic zero and ¢(t) € K[t] is such that
Dq(t) =0 the q(t) = c € K,
¢) let K be a perfect field of characteristic p. Then any polynomial
q(t) € K]Jt] such that Dq(t) = 0 has a form ¢(t) = rP(t) for some
r(t) € K[t].

The proof of Lemma 4.3 assigned as a homework problem.

Lemma 4.4. A polynomial ¢(t) € K|[t| has a multiple root in it’s
splitting field iff polynomials ¢(¢) and Dgq(t) have a common factor of
degree > 0.

Proof of Lemma 4.4. a) Suppose that ¢(t) € K|[t] has a multiple
root. We want to show that ¢(¢), Dq(t) € K[t] are not relatively prime.
Suppose that they are relatively prime. Then there exists a(t),b(t) €
K[t] such that a(t)q(t) + Dq(t)b(t) = 1.

On the other hand if ¢(¢) € K[t] has a multiple root o € L we have
q(t) = (t— a)’r(t), r(t) € L[]
But then
Dq(t) = 2(t — a)r(t) + (t — a)*Dr(t)
S0



(t — a)|q(t) and (¢t — «)|Dg(t). So « is a root of the polynomial
a(t)q(t) + Dq(t)b(t). But this is impossible since a(t)q(t) + Dq(t)b(t) =
1.

The contradiction shows that ¢(t), Dq(t) € K][t] are not relatively
prime.

b) Assume now that polynomials ¢(t) and Dgq(t) have a common
factor r(t) of degree > 0. Let o € L be a root of (t). I claim that it
is a multiple root of ¢(t).

Assume this is not true. Since r(t)|q(t) we know that « is a root of
q(t). If it is not a multiple root of ¢(¢) then

q(t) = (t — a)s(t), r(t) € L[]
where « is not a root of s(t). But
Dq(t) = (t — a)Dr(t) + s(t)
So
Dg(a) = s(a) #0
This contradiction proves the Lemma.[]

Theorem 4.3. If p(t) € K[t] is an irreducible polynomial such that
Dp(t) # 0 then the polynomial p(t) is separable.

Proof. Suppose that an irreducible polynomial p(t) € K]Jt] is such
that Dp(t) # 0 and L D K is a splitting field of p(t). We show
that an assumption that p(¢) has a multiple root in @ € L leads to a
contradiction.

Let r(t) € K[t] be the greatest common divisor of p(¢) and Dp(t). As
follows from Lemma 4.5 (t — «)|r(t) in L[t]. Therefore deg r(t) is > 0.
On the other hand deg r(t) <deg Dp(t) <deg p(t). Since r(t) € K][t]
is the greatest common divisor of p(t) and Dp(t) it divides p(¢). But
is impossible since p(t) is irreducible.C]

Corollary . Let K be a field of characteristic zero. Then

a) Any irreducible polynomial over a field of characteristic zero is
separable,

b) a finite field extension L D K is separable.

Really if ch(K) = 0,¢(t) € K][t] is such that Dg(t) = 0 then, by
Lemma 4.3 b),q(t) = 0.

We start the proof of the Main theorem with the following result of
Dedekind.

Definition 4.4. Let K, L be fields and f1,..., f, : K — L be field
homomorphisms from K to L. We say that the homomorphisms are
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linearly independent if for any «q,...,, € L such that (ay,...,q,) #
(0, ...,0) there exists § € K such that

> imy aifi(B) # 0.
Lemma 4.5. Any set fi,..., f, : K — L of distinct field homomor-
phisms is linearly independent.

Proof. We assume that fi, ..., f, : K — L are linearly dependent
and show that this assumption leads to a contradiction.

If f1,..., fn : K — L are linearly dependent then there exists
ai, ..., an € L such that (aq, ..., a,) # (0,...,0) and for all € K we
have

> i aifi(B) = 0.
Let m < n be the smallest number such that we can find oy, ..., a,, €
L such that (o, ..., ay) # (0, ...,0) and for all 8 € K we have

(%) Zaz’fz’(ﬁ) =0

If m = 1 then we have a;f1(8) = 0 for all § € K. In particular
ai1fi(1) = 0. But f1(1) = 1. So we have oy = 0. But this equality
would contradict our assumption.

So we can assume that m > 1. Since f; # f,, we can find v € K
such that f1(y) # fm(7y). The identity

Y wfi(8) =0, €K
i=1

implies the identity
Y aifi(7) =0,5 € K

i=1

Since f; : K — L,1 <1 < n are field homomorphisms we see that
(00 Y ifi(B)fi(7) =0,8€ K
i=1

If we multiply (%) by fi,(7) and subtract the result from (xx) we
obtain an identity

Z ol fi(B) = 0,8 € K, o} :== o (fi(7) — fa(7))
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By the construction o) # 0. But the existence of such an identity

contradicts to our choice of m. This contradiction proves Lemma 4.5.
O



