Definition 4.1. Given a field extension $L \supset K$ we denote by Gal(L/K) the set of field isomorphisms $f: L \to L$ such that $f(c) = c, c \in K$.

Remark As you will see the set Gal(L/K) has a natural group structure. We call it the *Galois group* of the extension $L \supset K$.

Lemma 4.1. Show that

- a) for any $f, g \in Gal(L/K)$ the composition
- $f \circ g : L \to L$

belongs to Gal(L/K),

- b) the composition law $(f, g) \to f \circ g$ defines a group structure on the set Gal(L/K) with the unit equal to the identity map $Id: l \to l, l \in L$.
- c) Let $G = (g_1, g_2, ..., g_n)$ be a finite group. Then for any $g \in G$ the sets $(gg_1, gg_2, ..., gg_n)$ and $(g_1, g_2, ..., g_n)$ coincide.

The proof of Lemma 4.1 assigned as a homework problem.

Let $L\supset K$ be a field extension, Gal(L/K). To any intermediate field extension $F,K\subset F\subset L$ we can assign a subgroup $H(F)\subset Gal(L/K)$ define by

$$H(F) := \{ h \in Gal(L/K) | h(f) = f \forall f \in F \}$$

Conversely to any subgroup $H \subset Gal(L/K)$ we can assign an intermediate field extension $F(H), K \subset F(H) \subset L$ where

$$F(H) := \{l \in L | h(l) = l \forall h \in H\}$$

In other words if A(L, K) is the set of fields F in between K and L and B(L, K) is the set of subgroups of G we constructed maps

- $\tau: A(L,K) \to B(L,K), F \to H(F)$ and
- $\eta: B(L, K) \to A(L, K), H \to F(H).$

The Main theorem of the Galois theory.

For a finite field extension $L \supset K$

- a) $|Gal(L/K)| \leq [L:K]$,
- b) if |Gal(L/K)| = [L:K] then the maps $\tau: A(L,K) \to B(L,K), F \to H(F)$ and
 - $\eta: B(L,K) \to A(L,K), H \to F(H)$ are isomorphisms,
- c) |Gal(L/K)| = [L:K] iff the extension $L \supset K$ is normal and separable,
- d) any separable extension $L\supset K$ is contained in a normal extension $M\supset L\supset K$.

To finish the formulation of the main theorem we have to give definitions of normal and separable extensions. **Definition 4.2.** A finite field extension $L \supset K$ is normal if any irreducible polynomial $p(t) \in K[t]$ which has a root in L has all it roots in L.

Theorem 4.2. An extension $L \supset K$ is normal and finite iff it is a splitting field for some polynomial over K.

Proof. a) Assume that $L \supset K$ is normal and finite. We have to construct a monic polynomial $q(t) \in K[t]$ such which decomposes in L[t] in a product of linear factors

$$q(t) = (t - \alpha_1)^{m_1} \times \dots \times (t - \alpha_n)^{m_n}, \alpha_i \in L, 1 \le i \le n$$

and $L = K(\alpha_1, ..., \alpha_n)$.

Since the extension $L \supset K$ is finite there exist $\beta_1, ..., \beta_m \in L$ such that $L = K(\beta_1, ..., \beta_m)$. Let $p_j(t) := Irr(\beta_j, K, t) \in K[t]$ be the corresponding minimal polynomials and $q(t) := \prod_{j=1}^m p_j(t)$. Since polynomials $p_j(t) \in K[t]$ are irreducible and have roots $\beta_j \in L$ it follows from the normality of $L \supset K$ that all the roots of $p_j(t) \in K[t]$ are in L. So L contains a splitting field of q(t).

On the other hand since $L = K(\beta_1, ..., \beta_m)$ we see that this splitting field of q(t) is equal to $L.\square$

b) Assume now that L is a splitting field of a polynomial $q(t) \in K[t]$. Then $L \supset K$ is finite. We have to show that it is normal.

Let $p(t) \in K[t]$ be an irreducible polynomial and M be a splitting field of the product q(t)p(t). For any root $\alpha \in M$ of p(t) we can consider subfields $K(\alpha) \subset L(\alpha) \subset M$.

Lemma 4.2. The degree $[L(\alpha):L]$ does not depend on a choice of a root $\alpha \in M$ of p(t).

Proof. Let α_1, α_2 be roots of p(t) in M. We have to show that $[L(\alpha_1):L] = [L(\alpha_2):L]$.

Consider extensions $K \subset L \subset L(\alpha_i)$, i = 1, 2. The product formula implies that $[L(\alpha_i) : L][L : K] = [L(\alpha_i) : K]$. So for the proof of the equality $[L(\alpha_1) : L] = [L(\alpha_2) : L]$ it is sufficient to show that $[L(\alpha_1) : K] = [L(\alpha_2) : K]$.

It is clear [see Lemma 3.4] that $L(\alpha_i)$ is a splitting field for q(t) over $K(\alpha_i)$. Since [see Lemma 2.4] each of the fields $K(\alpha_i)$ is isomorphic to the quotient ring K[t]/(p(t)) there exists and isomorphism

 $\eta: K(\alpha_1) \to K(\alpha_2)$ such that $\eta(c) = c, c \in K$.

It follows now from Theorem 3.1 that the isomorphism $\eta: K(\alpha_1) \to K(\alpha_2)$ can be extended to an isomorphism $\tilde{\eta}: L(\alpha_1) \to$

 $L(\alpha_2)$. But the existence of an isomorphism $\tilde{\eta}: L(\alpha_1) \to L(\alpha_2)$ implies the equality $[L(\alpha_1):K] = [L(\alpha_2):K]$. Lemma 4.3 is proven.

Now we can finish the proof of Theorem 4.2. Let $p(t) \in K[t]$ be an irreducible polynomial which has a root $\alpha \in L$. We want to show that all the roots of p(t) in M are actually in L. Let $\beta \in M$ be a root of p(t). It follows from Lemma 4.2 that $[L(\alpha) : L] = [L(\beta) : L]$. Since $\alpha \in L$ we have $[L(\alpha) : L] = 1$. Therefore $[L(\beta) : L] = 1$. So $\beta \in L$. \square

Definition 4.3. a) An irreducible polynomial $p(t) \in K[t]$ is separable if it does not have multiple roots in a splitting field,

- b) A finite field extension $L \supset K$ is separable if for any $\alpha \in L$ the minimal polynomial $p(t) = Irr(\alpha, K, t) \in K[t]$ of α is separable,
- c) We denote by $D:K[t]\to K[t]$ the K-linear map such that $D(t^n):=nt^{n-1},$
- d) we say that a field K of characteristic p > 0 is *perfect* if for any $\alpha \in K$ the equation $t^p \alpha = 0$ has a solution in K.

We start with the following useful results.

Lemma 4.3. a) For any $q(t), r(t) \in K[t]$ we have

$$D(qr)(t) = Dq(t)r(t) + q(t)Dr(t)$$

- b) is If K is a field of characteristic zero and $q(t) \in K[t]$ is such that Dq(t) = 0 the $q(t) = c \in K$,
- c) let K be a perfect field of characteristic p. Then any polynomial $q(t) \in K[t]$ such that Dq(t) = 0 has a form $q(t) = r^p(t)$ for some $r(t) \in K[t]$.

The proof of Lemma 4.3 assigned as a homework problem.

Lemma 4.4. A polynomial $q(t) \in K[t]$ has a multiple root in it's splitting field iff polynomials q(t) and Dq(t) have a common factor of degree > 0.

Proof of Lemma 4.4. a) Suppose that $q(t) \in K[t]$ has a multiple root. We want to show that $q(t), Dq(t) \in K[t]$ are not relatively prime. Suppose that they are relatively prime. Then there exists $a(t), b(t) \in K[t]$ such that a(t)q(t) + Dq(t)b(t) = 1.

On the other hand if $q(t) \in K[t]$ has a multiple root $\alpha \in L$ we have

$$q(t) = (t - \alpha)^2 r(t), r(t) \in L[t]$$

But then

$$Dq(t) = 2(t - \alpha)r(t) + (t - \alpha)^2 Dr(t)$$

So

 $(t-\alpha)|q(t)$ and $(t-\alpha)|Dq(t)$. So α is a root of the polynomial a(t)q(t)+Dq(t)b(t). But this is impossible since a(t)q(t)+Dq(t)b(t)=1

The contradiction shows that $q(t), Dq(t) \in K[t]$ are not relatively prime.

b) Assume now that polynomials q(t) and Dq(t) have a common factor r(t) of degree > 0. Let $\alpha \in L$ be a root of r(t). I claim that it is a multiple root of q(t).

Assume this is not true. Since r(t)|q(t) we know that α is a root of q(t). If it is not a multiple root of q(t) then

$$q(t) = (t - \alpha)s(t), r(t) \in L[t]$$

where α is not a root of s(t). But

$$Dq(t) = (t - \alpha)Dr(t) + s(t)$$

So

$$Dq(\alpha) = s(\alpha) \neq 0$$

This contradiction proves the Lemma.□

Theorem 4.3. If $p(t) \in K[t]$ is an irreducible polynomial such that $Dp(t) \neq 0$ then the polynomial p(t) is separable.

Proof. Suppose that an irreducible polynomial $p(t) \in K[t]$ is such that $Dp(t) \neq 0$ and $L \supset K$ is a splitting field of p(t). We show that an assumption that p(t) has a multiple root in $\alpha \in L$ leads to a contradiction.

Let $r(t) \in K[t]$ be the greatest common divisor of p(t) and Dp(t). As follows from Lemma 4.5 $(t-\alpha)|r(t)$ in L[t]. Therefore deg r(t) is > 0. On the other hand deg $r(t) \le \deg Dp(t) < \deg p(t)$. Since $r(t) \in K[t]$ is the greatest common divisor of p(t) and Dp(t) it divides p(t). But is impossible since p(t) is irreducible.

Corollary . Let K be a field of characteristic zero. Then

- a) Any irreducible polynomial over a field of characteristic zero is separable,
 - b) a finite field extension $L \supset K$ is separable.

Really if $\mathrm{ch}(K)=0, q(t)\in K[t]$ is such that Dq(t)=0 then, by Lemma 4.3 b),q(t)=0.

We start the proof of the Main theorem with the following result of Dedekind.

Definition 4.4. Let K, L be fields and $f_1, ..., f_n : K \to L$ be field homomorphisms from K to L. We say that the homomorphisms are

linearly independent if for any $\alpha_1, ..., \alpha_n \in L$ such that $(\alpha_1, ..., \alpha_n) \neq (0, ..., 0)$ there exists $\beta \in K$ such that

 $\sum_{i=1}^{n} \alpha_i f_i(\beta) \neq 0.$

Lemma 4.5. Any set $f_1, ..., f_n : K \to L$ of distinct field homomorphisms is linearly independent.

Proof. We assume that $f_1, ..., f_n : K \to L$ are linearly dependent and show that this assumption leads to a contradiction.

If $f_1, ..., f_n : K \to L$ are linearly dependent then there exists $\alpha_1, ..., \alpha_n \in L$ such that $(\alpha_1, ..., \alpha_n) \neq (0, ..., 0)$ and for all $\beta \in K$ we have

 $\sum_{i=1}^{n} \alpha_i f_i(\beta) = 0.$

Let $m \leq n$ be the smallest number such that we can find $\alpha_1, ..., \alpha_m \in L$ such that $(\alpha_1, ..., \alpha_m) \neq (0, ..., 0)$ and for all $\beta \in K$ we have

$$(\star) \sum_{i=1}^{m} \alpha_i f_i(\beta) = 0$$

If m = 1 then we have $\alpha_1 f_1(\beta) = 0$ for all $\beta \in K$. In particular $\alpha_1 f_1(1) = 0$. But $f_1(1) = 1$. So we have $\alpha_1 = 0$. But this equality would contradict our assumption.

So we can assume that m > 1. Since $f_1 \neq f_m$ we can find $\gamma \in K$ such that $f_1(\gamma) \neq f_m(\gamma)$. The identity

$$\sum_{i=1}^{m} \alpha_i f_i(\beta) = 0, \beta \in K$$

implies the identity

$$\sum_{i=1}^{m} \alpha_i f_i(\beta \gamma) = 0, \beta \in K$$

Since $f_i: K \to L, 1 \leq i \leq n$ are field homomorphisms we see that

$$(\star\star)\sum_{i=1}^{m}\alpha_{i}f_{i}(\beta)f_{i}(\gamma)=0, \beta\in K$$

If we multiply (\star) by $f_m(\gamma)$ and subtract the result from $(\star\star)$ we obtain an identity

$$\sum_{i=1}^{m-1} \alpha_i' f_i(\beta) = 0, \beta \in K, \alpha_i' := \alpha_i (f_i(\gamma) - f_n(\gamma))$$

By the construction $\alpha'_i \neq 0$. But the existence of such an identity contradicts to our choice of m. This contradiction proves Lemma 4.5.