Hubbard trees for post-singularly finite exponential maps

Michael Rothgang

BMS Student Conference, February 22, 2017 Bachelor's research project, at Jacobs University Bremen Thesis advisor: Prof. Dierk Schleicher

Outline of my talk

1 What do we investigate?

(2) How does a combinatorial classification work?

What do we study?

 holomorphic dynamics, links complex analysis + dyn. systems iteration of entire holomorphic functions

(□) ▶ (□)

What do we study?

- holomorphic dynamics, links complex analysis + dyn. systems iteration of entire holomorphic functions
- entire function $f: \mathbb{C} \to \mathbb{C} :=$ complex differentiable on \mathbb{C}
- much stronger than real differentiability!

A (10) < A (10) </p>

What do we study?

- holomorphic dynamics, links complex analysis + dyn. systems iteration of entire holomorphic functions
- entire function $f: \mathbb{C} \to \mathbb{C} :=$ complex differentiable on \mathbb{C}
- much stronger than real differentiability!
- for example, entire functions are analytic
- conversely, convergent power series define entire functions
- \Rightarrow entire function *is* a power series converging on $\mathbb C$

What is holomorphic dynamics? (cont.)

• iteration: given $z \in \mathbb{C}$, consider its orbit $z, f(z), f(f(z)), \ldots$

(b) (4) (3) (4)

What is holomorphic dynamics? (cont.)

- iteration: given $z \in \mathbb{C}$, consider its orbit $z, f(z), f(f(z)), \ldots$
- goal: understand possible behaviour when iterating a function

What is holomorphic dynamics? (cont.)

- iteration: given $z \in \mathbb{C}$, consider its orbit $z, f(z), f(f(z)), \ldots$
- goal: understand possible behaviour when iterating a function Can points' orbits converge to infinity? Can they become periodic?

A (10) < A (10) </p>

What is holomorphic dynamics? (cont.)

- iteration: given $z \in \mathbb{C}$, consider its orbit $z, f(z), f(f(z)), \ldots$
- goal: understand possible behaviour when iterating a function Can points' orbits converge to infinity? Can they become periodic? How common are these; how does a generic point behave?

A (10) < A (10) </p>

What is holomorphic dynamics? (cont.)

- iteration: given $z \in \mathbb{C}$, consider its orbit $z, f(z), f(f(z)), \ldots$
- goal: understand possible behaviour when iterating a function Can points' orbits converge to infinity? Can they become periodic? How common are these; how does a generic point behave?
- Can we describe such behaviour in simpler terms?
- Classify functions by their possible behaviour

What is holomorphic dynamics? (cont.)

- iteration: given $z \in \mathbb{C}$, consider its orbit $z, f(z), f(f(z)), \ldots$
- goal: understand possible behaviour when iterating a function Can points' orbits converge to infinity? Can they become periodic? How common are these; how does a generic point behave?
- Can we describe such behaviour in simpler terms?
- Classify functions by their possible behaviour

- different functions can have the same behaviour
- \Rightarrow want to classify behaviour, not the function itself!

- different functions can have the same behaviour
- \Rightarrow want to classify behaviour, not the function itself!
 - given a map, derive a combinatorial object from its dynamics (say a finite graph)
 - characterise the combinatorial objects so obtained

- different functions can have the same behaviour
- \Rightarrow want to classify behaviour, not the function itself!
 - given a map, derive a combinatorial object from its dynamics (say a finite graph)
 - characterise the combinatorial objects so obtained
 - Does every such graph correspond to a map?
 Given a graph, construct a function having that graph!

- different functions can have the same behaviour
- \Rightarrow want to classify behaviour, not the function itself!
 - given a map, derive a combinatorial object from its dynamics (say a finite graph)
 - characterise the combinatorial objects so obtained
 - Does every such graph correspond to a map? Given a graph, construct a function having that graph!

Our big hammer: Thurston's theorem

Theorem (William Thurston, 1980s)

Every Thurston map is Thurston equivalent to a rational map iff there is no Thurston obstruction.

Our big hammer: Thurston's theorem

Theorem (William Thurston, 1980s)

Every Thurston map is Thurston equivalent to a rational map iff there is no Thurston obstruction.

 \bullet idea: combinatorial object \rightarrow map on $\mathbb{S}^2 \leftrightarrow$ rational map

Our big hammer: Thurston's theorem

Theorem (William Thurston, 1980s)

Every **Thurston map** *is* **Thurston** *equivalent to a rational map iff* there *is no* **Thurston** *obstruction.*

 \bullet idea: combinatorial object \rightarrow map on \mathbb{S}^2 \leftrightarrow rational map

Our big hammer: Thurston's theorem

Theorem (William Thurston, 1980s)

Every **Thurston map** *is* **Thurston** *equivalent to* **a** *rational* **map** *iff* there *is no* **Thurston** *obstruction.*

 \bullet idea: combinatorial object \rightarrow map on \mathbb{S}^2 \leftrightarrow rational map

Our big hammer: Thurston's theorem

Theorem (William Thurston, 1980s)

Every Thurston map is Thurston equivalent to a rational map iff there is no Thurston obstruction.

- \bullet idea: combinatorial object \rightarrow map on $\mathbb{S}^2 \leftrightarrow$ rational map
- ⇒ can find corresponding rational map unless there is a very precise obstruction

Our big hammer: Thurston's theorem

Theorem (William Thurston, 1980s)

Every Thurston map is Thurston equivalent to a rational map iff there is no Thurston obstruction.

- \bullet idea: combinatorial object \rightarrow map on $\mathbb{S}^2 \leftrightarrow$ rational map
- ⇒ can find corresponding rational map unless there is a very precise obstruction
 - reduces work to "just" a combinatorial-topological problem
 - definitely avoiding a Thurston obstruction is still hard!

Which functions to classify?

- full classification is out of scope
 - \Rightarrow restrict to important and tractable classes of functions

Which functions to classify?

- full classification is out of scope
 - \Rightarrow restrict to important and tractable classes of functions
- \rightarrow (suitable classes of) polynomials
- \rightarrow rational functions = quotients of polynomials
- \rightarrow transcendental = non-polynomial entire functions

- Can see f as a branched covering map $\mathbb{C} \to \mathbb{C}$
- Ramification points are called *singular values* of *f*

- Can see f as a branched covering map $\mathbb{C} \to \mathbb{C}$
- Ramification points are called *singular values* of *f*
- Post-singular set = (closure of) orbits of all singular values
- *f* is *post-singularly finite* iff its post-singular set is finite i.e. finitely many singular values, each is eventually periodic

- Can see f as a branched covering map $\mathbb{C} \to \mathbb{C}$
- Ramification points are called *singular values* of *f*
- Post-singular set = (closure of) orbits of all singular values
- *f* is *post-singularly finite* iff its post-singular set is finite i.e. finitely many singular values, each is eventually periodic
- for *f* polynomial, singular values = critical values = roots of *f*' also use the term post-critically finite

- Can see f as a branched covering map $\mathbb{C} \to \mathbb{C}$
- Ramification points are called *singular values* of *f*
- Post-singular set = (closure of) orbits of all singular values
- *f* is *post-singularly finite* iff its post-singular set is finite i.e. finitely many singular values, each is eventually periodic
- for f polynomial, singular values = critical values = roots of f' also use the term post-critically finite
- why? describes most of the dynamics!

- post-critically finite polynomials: several classifications
- pcf rational functions: some further classes known, such as pcf Newton maps
- result for *all* pcf rational functions is current research!

- post-critically finite polynomials: several classifications
- pcf rational functions: some further classes known, such as pcf Newton maps
- result for *all* pcf rational functions is current research!
- post-singularly finite transcendental functions?

- post-critically finite polynomials: several classifications
- pcf rational functions: some further classes known, such as pcf Newton maps
- result for *all* pcf rational functions is current research!
- post-singularly finite transcendental functions? need Thurston's theorem!
- can classify psf exponential maps, but no more
- need good combinatorial invariants to move further

Our goal: build a new invariant

- construct combinatorial invariant for psf transcendental maps
- focus on exponential maps for simplicity
- $\bullet\,$ Thurston's theorem proven for them $\to\,$ can classify
- hope: generalise to all psf transcendental maps

Our new invariant: Hubbard trees

- Hubbard tree is a finite embedded tree
- vertices contain the post-singular set
- forward invariant: image is subset of tree again

Symbolic drawing of a Hubbard tree with post-singular set.

Our new invariant: Hubbard trees

- Hubbard tree is a finite embedded tree
- vertices contain the post-singular set
- forward invariant: image is subset of tree again

Symbolic drawing of a Hubbard tree with post-singular set.

- for pcf polynomials, Hubbard trees exist essentially unique \rightarrow can use for classification
- construct Hubbard trees for psf exponential maps

There cannot be Hubbard trees for psf exponential maps!

Michael Rothgang Hubbard trees for psf exponential maps

There cannot be Hubbard trees for psf exponential maps!

- consider escaping set $I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty\}$
- \bullet theorem: is union of countably many disjoint continuous curves going to ∞
- dynamic ray = one such curve; does not self-intersect
- ray $\gamma:(0,\infty)
 ightarrow\mathbb{C}$ lands at $a\in\mathbb{C}$ if $\gamma(t)
 ightarrow a$ as t
 ightarrow0

There cannot be Hubbard trees for psf exponential maps!

Some dynamic rays for the exponential map $i\pi \exp z$

Michael Rothgang Hubbard trees for psf exponential maps

There cannot be Hubbard trees for psf exponential maps!

Example for $i\pi \exp z$

• recall definition: forward-invariant tree spanning post-singular set *P*

There cannot be Hubbard trees for psf exponential maps!

Example for $i\pi \exp z$

- recall definition: forward-invariant tree spanning post-singular set P
 - exists dynamic ray g landing at singular value 0
- preimages of g disconnect C into countably many parts

There cannot be Hubbard trees for psf exponential maps!

Example for $i\pi \exp z$

- recall definition: forward-invariant tree spanning post-singular set *P*
- exists dynamic ray g landing at singular value 0
- preimages of g disconnect C into countably many parts
- but: P spans several parts
- ⇒ Hubbard tree must cross a ray preimage, contradiction!

There cannot be Hubbard trees for psf exponential maps!

Example for $i\pi \exp z$

- recall definition: forward-invariant tree spanning post-singular set P
- exists dynamic ray g landing at singular value 0
- preimages of g disconnect C into countably many parts
- but: P spans several parts
- ⇒ Hubbard tree must cross a ray preimage, contradiction!

Solution: only require forward invariance up to homotopy rel vertices

Outline of tree construction

- there is a dynamic ray landing at 0 using holomorphic dynamics, topology, hyperbolic geometry
- its preimages partition C into countably many parts/"sectors"
 → each dynamic ray lies in exactly one sector
- find how further tree vertices must look like by symbolic dynamics and some graph theory
- these vertices exist: are landing points of dynamic rays (symbolic dynamics also)
- \Rightarrow Know the vertices our Hubbard tree must have

Outline of tree construction (cont.)

• tree edges?

Outline of tree construction (cont.)

- tree edges? "thou shalt not cross dynamic rays"
- every tree vertex has at least two dynamic rays landing choose tree edges as to avoid them

Outline of tree construction (cont.)

- tree edges? "thou shalt not cross dynamic rays"
- every tree vertex has at least two dynamic rays landing choose tree edges as to avoid them
- This determines how edges must run, there is an embedded tree that does not cross any such ray!
- last step: this tree candidate is indeed forward invariant all these: bit of topology, and classical discrete math

Next steps

- uniqueness of Hubbard trees
 Can we make our heuristic more rigorous?
- classification using Hubbard trees: given a tree, can we reconstruct the exponential map?
- extend to all post-singularly finite transcendental maps!

Thanks for your attention!

(日)

포 🛌 포

Better definitions of Hubbard trees: how to solve our problem

- define it away, consider e.g. cosine maps instead
- take trees crossing $-\infty$: will not work! every edge must contain $-\infty$, gives a contradiction
- relax forward invariance, allow deforming our edges (homotopy)

Why transcendental functions are much harder than polynomials

- point at ∞ behaves differently
- for polynomials, can set $f(\infty) = \infty$ in a nice way ("superattracting fixed point")
- ullet transcendental maps, ∞ is an essential singularity!

Why transcendental functions are much harder than polynomials

- $\bullet\,$ point at $\infty\,$ behaves differently
- for polynomials, can set $f(\infty) = \infty$ in a nice way ("superattracting fixed point")
- \bullet transcendental maps, ∞ is an essential singularity!
- \bullet defined function on $\mathbb{C}=\mathbb{S}^2\setminus\{\infty\},$ what happens there?
 - $\textbf{0} \ \text{can extend} \ f \ \text{continuously} \Rightarrow \text{must be constant}$
 - ② *f* converges to infinity whenever $|z| \rightarrow \infty$, called a *pole* ⇒ *f* is a polynomial or a rational function
 - **3** essential singularity: both finite and infinite limit values happen in every neighbourhood of ∞ , f assumes all values in \mathbb{C} (with at most two exceptions)

Why transcendental functions are much harder than polynomials

- $\bullet\,$ point at $\infty\,$ behaves differently
- for polynomials, can set $f(\infty) = \infty$ in a nice way ("superattracting fixed point")
- \bullet transcendental maps, ∞ is an essential singularity!
- \bullet defined function on $\mathbb{C}=\mathbb{S}^2\setminus\{\infty\},$ what happens there?
 - **(** $an extend f continuously <math>\Rightarrow$ must be constant
 - General f converges to infinity whenever |z| → ∞, called a pole
 ⇒ f is a polynomial or a rational function
 - **③** essential singularity: both finite and infinite limit values happen in every neighbourhood of ∞ , f assumes all values in \mathbb{C} (with at most two exceptions)

Thus, transcendental dynamics is HARD. For example, escaping set for polynomials is homeomorphic to complement of a disc - for "many" transcendental maps, consists of countably many curves