Übungsblatt 2

Aufgabe 1

Seien $v, w \in \mathbb{R}^2$ die beiden Vektoren

$$v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Zeichne die beiden Vektoren in ein Koordinatensystem und bestimme deren Längen |v| und |w|, deren Skalarprodukt $\langle v, w \rangle$ sowie den Winkel zwischen ihnen $\angle(v, w)$.

Aufgabe 2

Wir betrachten zwei Geraden $G, H \subset \mathbb{R}^2$, beschrieben durch die Gleichungen

$$G: \quad 3X - 2Y = 0$$

$$H: \quad X - Y = 1 \quad .$$

a) Bestimme für jede Gerade einen Richtungsvektor. (Gemeint ist der Vektor v in der Darstellung $G=c+\mathbb{R}v$; analog für H.)

b) Bestimme den Winkel, in dem sich G und H schneiden.

Aufgabe 3

Zeige, dass die folgenden beiden Vektoren in \mathbb{R}^3 senkrecht aufeinander stehen.

$$v = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \quad w = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}.$$

Aufgabe 4

Bestimme die Lösungsmenge des folgenden linearen Gleichungssystems im \mathbb{R}^3 :

$$\begin{cases} 3X - Y - Z = 0 \\ X - Y = 0 \end{cases}$$