
Seventh exercise sheet “Algebra II” winter term 2024/5. The
following can be derived from Proposition 2.5.3 of the lecture.

Problem 1 (3 points). Let A ∈ Mat(m,m;Z) be a matrix with non-

vanishing determinant. Show that #(Zm/AZm) = |detA|.

Let K be an algebraic number field, S ⊆ K a subring with field of
quotients K for which the additive group (S,+) is finitely generated.
Such subrings are called orders in K. If ~s = (si)

m
i=1 is a base for this

free abelian group we put

(1) dS = det
(

TrK/Q(sisj)
)m

i,j=1
.

If ~t is another base then ~t = A~s and ~s = B~t for integer matrices A
and B which are inverse to each other. As det(A)det(B) = 1 we have
detA = detB ∈ {±1

}

. As (1) gets multiplied by the square of this

determinant when the base is replaced by ~t, (1) is independent of the
choice of the base.
As in the lecture let S∗ =

{

k ∈ K
∣

∣ TrK/Q(kS) ⊆ Z
}

.

Problem 2 (2 points). Show that [S∗ : S] = dS.

Remark 1. We have S ⊆ OK ⊆ O∗

K ⊆ S∗ and it is not hard to show

that [OK : S] = [S∗ : O∗

K ] which we denote by f . Then dS = f 2dOK
.

This has the interesting consequence that S = OK when dS is square

free.

Problem 3 (3 points). If I ⊆ OK is a non-zero ideal, show that n =
[OK : I] is finite and NOK/ZI = nZ.

Problem 4 (3 points). If S = OK, show that dS/Z = dSZ.

This equalitiy of ideals in Z determines dS from dS/Z up to sign, and
the sign is determined by the fact that dS is positive if and only if the
number of field homomorphisms K → C with image not contained in
R (which is even) is divisible by four.

Problem 5 (2 point). Let R be a Dedekind domain with field of quo-

tients K, L a finite field extension of K and S ⊆ L a subring which

is integral over R, where we assume R 6= K and that L is the field of

quotients of S. Show that S is the integral closure of R in K if and

only if Sm is a discrete valuation ring for all m ∈ mSpecS.

With m as before, let S(m) =
{

l ∈ L
∣

∣ lm ⊆ m

}

.

Problem 6 (3 points). In the situation of the previous problem, show

that S is the integral closure of R in L if and only if S(m) = S for all

m ∈ mSpecS.
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General methods for determining OK for an algebraic number field
K usually start with an order S for K. One method for finding OK

uses the criterion from the previous problem, which is automatically
satisfied at all m not containing dS, which only leaves finitely many
remaining m. For these it is easy to see that S(m) is integral over Z,
hence an order for K. If it is larger than S one can replace S by S(m)

and start a new iteration of the method. If there is no m for which S(m)

is larger than S, we terminate with OK = S. In this it is sufficient to
consider S(m) with m ∩ Z = pZ where p2 divides dS.
Of course this requires a number of algorithms which are beyond the

scope of this lecture module. For instance, it is necessary to decompose
dS into prime factors. From the point of view of algorithmic complex-
ity this is the hardest step. Finding the m containing p with p2|dS

then uses algorithms for polynomials over finite fields to determine the
structure of S/pS. A detailed algorithm can be found in the basic
text books of H. Cohen (Algorithm 6.1.8) or of Pohst and Zassenhaus
(Section 4.6) on basic algorithmic algebraic number theory.
The following is often attributed to Gotthold Eisenstein, although it

was found a few years earlier by Theodor Schönemann.

Problem 7 (4 points). Let A be a factorial domain with field of quo-

tients K, π a prime element of A and P =
∑d

k=0 pkT
k ∈ A[T ] with

pd = 1, all other pk divisible by π and p0 not divisible by π2. Show that

P is irreducible.

Here the fact that A[T ] is factorial can be used without proof, and
the same holds for the fact that such P are irreducible in A[T ] if and
only if this holds in K[T ].
Solutions should be submitted to the tutor by e-mail before Friday

November 29 24:00.


