Analysis 2

05.07.2018

Prof. Dr. H. Koch Dr. F. Gmeineder

Abgabe: 12.07.2018 in der Vorlesung

Übungsblatt 12

Aufgabe 1:

Es sei $R>0,\ I:=(-R,R)$ und es seien $f\colon I\to\mathbb{R}$ eine ungerade sowie $g\colon I\to\mathbb{R}$ eine gerade Funktion. Zeigen Sie, dass die Differentialgleichung

$$\ddot{x} + f(t)\dot{x} + g(t)x = 0$$

ein Fundamentalsystem von Lösungen besitzt, welches aus einer geraden und einer ungeraden Funktion besteht.

Aufgabe 2:

Für $n \in \mathbb{N}$ sei

$$H_n(t) := (-1)^n e^{t^2} \frac{\mathrm{d}^n}{\mathrm{d}t^n} e^{-t^2}, \qquad x \in \mathbb{R}.$$

- (a) Zeigen Sie, dass H_n ein Polynom vom Grad n ist.
- (b) Zeigen Sie, H_n die Differentialgleichung $\ddot{H}_n 2t\dot{H}_n + 2nH_n = 0$ erfüllt.
- (c) Zeigen Sie, dass jede Lösung der Differentialgleichung $\ddot{x} + (2n+1-t^2)x = 0$ gilt: $x(t) = e^{-\frac{t^2}{2}}u(t)$, wobei u die Differentialgleichung $\ddot{u} 2t\dot{u} + 2nu = 0$ löst.

Aufgabe 3:

Bestimmen Sie alle Lösungen der folgenden Differentialgleichung:

$$t^{2}(1-t)\ddot{x}(t) + 2t(2-t)\dot{x} + 2(1+t)x = t^{2}, \quad 0 < t < 1.$$

Bestimmen Sie weiters reelle Fundamentalsysteme zu den folgenden Differentialgleichungen:

$$\ddot{x} - 4\dot{x} + 4x = 0,$$
$$x''' - x = 0.$$

Aufgabe 4:

Bestimmen Sie ein Fundamentalsystem $(\varphi_1, \varphi_2, \varphi_3)$ von Lösungen des Systems

$$\dot{x} = \left(\begin{array}{ccc} 1 & 2 & 3\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{array}\right) x$$

unter der Anfangsbedingung $\varphi_k(0) = e_k$, k = 1, 2, 3, wobei e_k den k-ten Standardeinheitsvektor im \mathbb{R}^3 bezeichne.

Helpdesk zur Analysis 2: Montags, 13-16 Uhr & Donnerstags, 10-13 Uhr, Raum N1.002, Endenicher Allee 60 (Nebengebäude, 1. Stock)